深度度量学习的多视角高频工件图像检索
针对工业场景下高频工件多视角识别精度低的问题,提出一种深度度量学习的高频工件图像检索方法。首先搭建基于卷积神经网络的图像特征向量编码模型,采用差异性损失(Different Loss)提取工件图像的私有特征和公共特征,通过相似度损失(Similarity Loss)融合多视角图像的公共特征获得初级嵌入向量;然后利用三元组中心损失(Triplet-Center Loss)以减小类内距离和增大类间距离为准则监督嵌入向量的学习,获得鲁棒性强的嵌入向量;最后以该嵌入向量表示高频工件图像的特征编码,实现多视角高频工件的图像检索。实验结果表明,提出的方法比单视角特征编码具有更强的表征能力,其检索准确率提高了8.95%;在相同网络结构下,提出的模型比其他网络模型的检索准确率高出9.68%。
面向海量机械故障数据的胶囊网络算法研究
针对卷积神经网络算法在大规模故障数据集检测中出现的故障敏感度低、部分特征丢失等问题,提出一种基于优化胶囊网络算法的机械故障检测方案。胶囊网络算法采用多神经元封装的胶囊体结构设计,且包含多个胶囊层,具有更强的故障数据处理能力和泛化能力;经过squash函数挤压后的胶囊矢量可以更准确地提取和描述故障特征;升维胶囊矢量,基于特征编码和归一化的处理方式,可得到更准确的故障分类结果。实验结果显示:优化胶囊网络算法具有更强的故障特征聚类性能和迭代运算性能,故障集检测精度值高于经典卷积神经网络算法。
-
共1页/2条




