碧波液压网 欢迎你,游客。 登录 注册

液力变矩器的叶片数神经网络模型

作者: 王安麟 孟庆华 曹岩 韩继斌 来源:西安交通大学学报 日期: 2023-06-26 人气:78
液力变矩器的叶片数神经网络模型
针对一元束流理论无法量化表达叶片数对液力变矩器性能影响的缺陷和基于三维流体解析的液力变矩器叶片数设计中大组合、大计算量等难题,提出液力变矩器的叶片数神经网络模型。在结合台架试验数据确认三维流体解析结果准确的基础上,利用正交试验法合理地安排试验,并以三维流体仿真结果作为反向传播网络的训练样本;为提高反向传播网络的设计效率及收敛精度,引入遗传算法来优化反向传播网络的初始权重,训练后的反向传播网络可以对非训练样本集合的液力变矩器性能实现准确预测。研究结果表明,叶片数神经网络模型是基于整机性能匹配的液力变矩器定制化设计的桥梁,对提升整机作业效率具有重要的工程应用价值。

基于NAKF和DBN的液压管路故障智能诊断方法

作者: 姚存治 张明真 张尚然 王冠群 来源:机电工程 日期: 2021-09-29 人气:90
基于NAKF和DBN的液压管路故障智能诊断方法
针对航空液压管路故障识别困难的问题,提出了一种基于非线性自适应卡尔曼滤波器(NAKF)和深度信念网络(DBN)的液压管路智能故障诊断方法。首先,在传统卡尔曼滤波器(KF)的基础上,利用最小二乘法修正构造的Sigma点,消除高斯分布对Sigma点影响,提出了非线性自适应卡尔曼滤波器,并用其对仿真信号进行了降噪处理;然后,对液压管路实测振动信号中的随机噪声进行了去除,对深度信念网络模型参数进行了设计,并将液压管路数据集输入到深度信念网络模型中进行了训练;最后,基于同一样本数据,分别采用支持向量机(SVM)和反向传播神经网络(BPNN)等模型进行了训练处理,利用分类准确率等两个指标,对3种故障诊断模型进行了综合评估,对3种模型分类性能进行了对比分析。研究结果表明:采用NAKF-DBN智能故障模型得到的液压管路故障诊断准确率能达到99.72%,SVM模型和BPNN模...
    共1页/2条