碧波液压网 欢迎你,游客。 登录 注册

基于深度神经网络的液压泵泄漏状态识别

作者: 陈里里 何颖 董绍江 来源:仪器仪表学报 日期: 2025-01-16 人气:76
针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器的逐层学习对特征进行优化并提取出高维特征,然后使用Softmax进行识别。实验结果表明,堆栈稀疏自编码器能够有效地提取液压泵泄漏状态的高维特征,构建的深度神经网络可有效地识别液压泵泄漏状态,识别精度达到了97.6%。此外与支持向量机、极限学习机、卷积神经网络以及长短期记忆网络相比,深度神经网络具有更好的识别效果。

堆栈稀疏自编码器的风力机锥齿轮故障诊断

作者: 陈里里 司吉兵 董绍江 来源:机械设计与制造 日期: 2025-02-13 人气:98
堆栈稀疏自编码器的风力机锥齿轮故障诊断
针对当前齿轮故障诊断存在着准确性不高、主观性强等问题,提出了一种基于堆栈稀疏自编码器(SSAE)和softmax分类器相结合的齿轮故障诊断方法。首先,运用时域分析以及样本熵方法对风力机锥齿轮振动信号进行特征提取,其次,将提取的特征输入到SSAE中进一步学习目标数据的深层本质特征,并进行特征降维,最后使用softmax分类器中进行分类识别。通过实验结果表明,和文中其他浅层学习模型相比,SSAE能够从齿轮振动信号中有效学习到所需的深层本质特征,拥有更高的识别准确率,因而证实了该方法优越性。

基于小波分解与深度学习的液压泵泄漏状态识别

作者: 陈军江 陈里里 王朝宇 来源:组合机床与自动化加工技术 日期: 2021-12-06 人气:145
基于小波分解与深度学习的液压泵泄漏状态识别
针对液压信号高度复杂且难以识别的特点,提出了一种基于堆栈稀疏自编码器(SSAE)与Softmax的深度神经网络(DNN)来对液压泵泄漏状态信号的特征进行优化与识别。对液压泵的压力与流量信号进行5层小波分解,计算5个高频系数与一个低频系数的样本熵值作为小波特征;融合信号的小波特征与时域特征作为低阶特征,输入构建的深度神经网络进行特征优化,学习输出高阶特征,并使用连接的Softmax层完成识别任务。实验结果表明,基于堆栈稀疏自编码器与Softmax构建的深度神经网络能够学习到液压信号的高阶特征,有效完成液压泵不同泄漏状态的识别,识别精度达到99.3%。此外与随机森林与支持向量机相比,该深度神经网络具有更好的识别精度。
    共1页/3条