基于matlab的三相三电平逆变器SVPWM算法
伴随着高速列车的引进,我国铁路事业进入了高速时代,其中对CRH2机车关键技术的研究已经有突破性进展。该车上的变频装置属于大容量、高电压变频装置,由于目前的单管容量以及传统的两电平的控制方式均无法满足应用要求,于是采用三电平控制器,三电平可以使开关器件承受的压降降低、改善输出波形的波形质量、减小逆变器和负载收到的冲击等优点,采用在高速列车动车组上。
所谓三电平每相桥臂由4个电力电子开关器件串联组成,直流回路中性点0(其电位为零)由2个箝位二级管引出,分别接到上、下桥臂的中间,这样,每个电力电子开关器件的耐压值可降低一半,故结构更适合于中压大功率交流传动控制,这也是目前广泛应用的拓扑结构。三电平中点箝位式逆变器主电路如图1所示。
图1 三电平中点钳位式逆变器主电路
三电平逆变器的Park矢量为
(1)
通常,逆变器利用开关器件的开通和关断经由各相只输出+Udc/2,0,-Udc/2三种电压,通式(1)变换,输出电压矢量仅有27种类型,也就是说逆变器输出27种基本矢量,如表1所示。这里,一般将幅值为2Udc/3的矢量定义为大电压矢量,如PNN,PPN;幅值为3 Udc/3的矢量定义为中电压矢量,如PON;幅值为Udc/3的矢量定义为小电压矢量,如POO,ONN。以上三类矢量可以分别简称为大矢量、中矢量和小矢量。
表1 三电平矢量表
为了实现三电平逆变器的SVPWM控制,在每个采样周期内,应分为一下三个步骤:
(l)区域判断。找出合成参考电压矢量的三个基本矢量。
(2)时间计算。确定三个基本矢量的作用时间,即每个矢量对应的占空比。
(3)时间状态分配。确定各个基本矢量对应的开关状态及作用次序,将基本矢量对应的作用时间分配给相应的开关状态,完成对开关器件的控制。
1、区域判断
传统算法根据三电平基本空间矢量图将整个矢量空间先分成6个大区域,再将每个大区域分成4个小区域。由于基本空间矢量中的短矢量在每个采样周期中出现的次数多,为了算法及仿真的准确性,本文将每个大区域细分成6个小区域。
按照这样的划分方法,传统三电平SVPWM算法的区域划分如图2所示。用I 、II、III,IV、V、Vl表示大区域,用1,2,3,4,5,6表示小区域。
大区域按照矢量角度每60°为一区划分,因此可以按照参考电压矢量的角度判断其所在的大区域。根据小区域的区域分布情况和几何关系,可以按照以下方法判断参考电压矢量所在的小区域。
相关文章
- 2024-07-09多CCD拼接相机中图像传感器不均匀性校正
- 2024-02-26实现同一分析周期内两流路并行分析的技术改造
- 2022-04-27监控摄像机日夜及彩色黑白转换两用简析
- 2023-03-02智能化色谱分析软件的研究与应用探讨
- 2024-07-31铁路客车提速轴承外圈非基准端面挡边平行度测量仪的研制



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。