碧波液压网 欢迎你,游客。 登录 注册

柴油机机体辐射噪声预测及低噪声改进设计

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

    世界各国对汽车噪声的限制越来越严格,内燃机是汽车噪声的重要声源. 在国外包括多体动力学仿真(MSS)、有限元(FEA)、边界元(BEM)等数值仿真技术已经用于内燃机开发阶段对噪声水平进行预测,以达到低噪声设计的目标. 国内也开展了这方面的研究工作,以虚拟技术为手段,实现对内燃机的子结构辐射噪声进行预测,但还未涉及到机体结构的低噪声改进设计. 发动机工作时机体在多种动载激励下发生振动,并带动与其表面相连的薄壁件剧烈振动产生大量辐射噪声,因此对机体结构进行改进,在降低自身振动的同时也可以降低对其他附件的激励,这也将是一种行之有效的降噪手段。

    以某型号单缸柴油机为例,先建立曲柄连杆机构的多体动力学模型,获得主轴承力、活塞侧向力、平衡轴轴承力等各载荷,再根据FEM/BEM方法依次得出整机的表面振动速度及辐射噪声的声场分布,整个流程如图1所示。最后结合原机体组合模型的动态特性和辐射噪声频谱图,针对机体薄弱部位作出相应的改进,最终达到机体降噪的设计目标。

 

图1 辐射噪声预测流程

1 多体动力学仿真

    内燃机工作时,作用在机体上的力包括气体爆发压力、主轴承力、活塞侧向力等多种载荷,受试验条件的限制有些载荷不便通过传感器测得,而多体动力学仿真技术正提供了获取这些载荷的有效方法.首先建立一个包含机体、曲轴、连杆、活塞、平衡轴在内的多体动力学模型并按照实际的运动关系确定各个运动副(如图2)。在对发动机多体动力学分析时,曲轴、润滑油膜及主轴承的相互耦合作用对主轴承载荷及整机振动有很大影响,因此为了提高计算精度,曲轴和机体采用柔性体.。在活塞的顶部施加气缸爆发压力.该发动机的额定转速为2200r/min,为了获得稳定可靠的载荷数据,整个仿真过程取3个周期,并对仿真得到的时域内的各载荷进行傅立叶变换,结果作为有限元进行频率响应分析时的输入载荷。

2 有限元动态特性分析

    建立整机的有限元模型包括机体、气缸盖、气门室罩等,该发动机的油底壳表面积较小且不是主要噪声源,所以模型中并没有包含油底壳部件。边界约束条件及载荷如下:约束机体4个连接螺栓孔的6个方向的自由度;将气体爆发压力施加在气缸盖上;活塞侧向力施加在气缸套内壁;主轴承载荷和平衡轴轴承载荷施加在对应的轴承孔四周。对于发动机的辐射噪声来讲,其主要能量集中在3000Hz以下,所以文中的频率响应求解范围确定为200~3000Hz,计算步长为20Hz,计算结果中输出有限元模型表面节点的振动速度,作为边界元模型的边界条件。为了验证有限元频率响应计算的准确性,对发动机台架试验得到的机体上某点的振动速度与计算得到的值进行比较,如图3所示。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签: 有限元 噪声
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论