碧波液压网 欢迎你,游客。 登录 注册

相机结构系统的试验模态分析

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

    试验模态分析的目的是对已有的结构系统进行试验分析并评估,获得结构系统的动态特性,找到结构系统所存在的问题,验证设计参数,确保结构的安全性和可靠性,同时为结构设计和响应预测提供依据。本文研究对象是某卫星摄像相机光机结构系统。由于相机在火箭发射过程之中,受到很大的冲击力,相机在发射方向产生很大的加速度,所以必须保证相机结构系统和光学系统的安全性;随卫星运转工作的过程中,相机也会受到外力干扰,所以必须保证相机光学系统的可靠性;不论是卫星的发射还是运转中,都应当满足相机和卫星体的安全性和可靠性要求。因此了解相机固有的动态特性,是十分必要的[1, 2]。虽然结构的动态特性可以通过有限元方法计算,但由于相机结构的复杂性,在建立有限元模型时引进的一系列人为假设往往很难与实际相符合,造成计算结果与实际情况不相吻合。本文对相机结构作了全面的试验模态分析,并进行了相关讨论研究。

    1 多自由度系统模态分析的理论基础[3]

    该相机本身是一个连续的弹性体系统,具有无限多个自由度,将它合理地离散化为一个有限多自由度系统。

    N阶自由度系统的运动方程为

[M]{x} +[C]{x} +[K]{x} = {f(t)} (1)

    式中:[M]、[C]和[K]分别为相机的质量、阻尼和刚度;{x}、{x#}和{x##}分别是位移、速度和加速度列阵; {f(t)}是外力列阵。

    对方程(1)作傅里叶变换,外力{f(t)}按简谐激励的傅里叶变换式导出,则有

([K] -X2[M] +jX[C]){X} = {F} (2)

    引入模态坐标向量

{q} = [5]-1{x}, {x} = [5]{q} (3)

    式中:

[5] = [{<}1, {<}2,,, {<}N] (4)

    根据模态振型与质量矩阵[M ]和刚度矩阵[K]的性质,可以得到频响函数矩阵[H(X)]

    式中:Mr、Kr和Cr分别为模态质量、模态刚度和模态阻力系数。

    可见,系统的任一频响函数均可表示为其各阶模态导纳的线性组合。所以可从试验测得频响函数,通过试验模态分析软件获得系统的模态参数。

    2 试验方法设计

    2. 1 基本假设

    模态分析理论的基本假设是:被测系统是线性的,是时不变性的,是满足Maxwell互易性原理的。在实验方案设计之初对该相机进行了试验验证,其符合上述假设。

    2. 2 相机结构特点及测试安排

    该相机的结构如图1所示,内部成像光路依次经过主反射镜,次反射镜,折转反射镜,第三反射镜和CCD焦平面。大箱体由殷钢制造,刚度较大,承力筒由高模量碳纤维制造,遮光镜由玻璃纤维制造。次主反射镜组与承力筒的前后法兰盘相连,折转反射镜组支架与主反射镜组相连,第三反射镜安装在大箱体内。相机体通过大箱体上的两个凸耳安装在铝质支座上,相机的重心在支座处[3]。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论