串联电池组电压检测电路的精度研究
1 引言
串联电池组广泛应用于手携式工具、笔记本电脑、通讯电台以及便携式电子设备、航天卫星、电动自行车、电动汽车、储能装置中。为了使电池组的可用容量最大化及提高电池组的可靠性,电池组中的单体电池性能应该一致,从而需对单体电池进行监控,即需要对单体电池的电压进行测量。
串联电池组电压测量的方法有很多,目前应用较多的是差分检测型[1]与电流源检测型[2]两种。差分检测型需要2个电阻对的阻值严格匹配,否则将影响电池组电压的检测精度,该方法使用中为了减少检测线漏电流对电池组一致性的影响[3],需要增加电阻的阻值,这样将增加了大规模生产的难度并降低了检测精度。而电流检测型的检测电路中仅需要一个电阻对的阻值匹配,文献[2]中提到为了提高检测的精度,需要小阻值的电阻匹配,但增大了检测线漏电流。在实际使用过程中为了减小检测线漏电流对电池组一致性的影响,以及减少电压检测电路的功耗,需要在电压检测线路上增加开关控制器件,往往采用光耦或者光电继电器[4]。
文献[2]的电流型电压检测电路具有较好的性能,但当电压低于2V时无法进行检测,本文首先对文献[2]的电压检测电路进行了改进,扩大了电压检测范围。其次以改进的电压检测电路并以光电继电器作为控制开关,对影响电压检测精度的因素进行了分析和实验,最后通过一种电子开关的方式来取代光电继电器,从而提高了电压检测精度。
2 影响电压测量精度的因素分析
文献[2]中的电流型电压检测电路测量精度高,但也存在着一定的缺陷,首先为了测量精度高,必须尽可能的减小电阻对的阻值,这必然增加了检测电路的漏电流;其次为了满足电路中的MOSFET管能正常作用,电路中运放的反向输入端与系统地之间的电压一般要大于3V以上,由于单体电池电压一般在2.0V~4.2V之间,因此为了满足要求必须用于两节单体电池以上,对于电池组中靠近系统地的两节单体电池无法用此方法进行测量。
本文采用了三极管Q1来取代文献[2]中的MOSFET,主要是因为MOSFET的开启电压一般都在2.5V以上,因此当单体电池电压低于2.5V时,文献[2]中的电路将无法检测,而电池的电压检测范围要求检测到1V以下,而改进后的电路能满足这种需求,如图1所示。
图1 电流源型电压检测电路
图中CELLn为第n节单体电池的电压,该电路可以对多串电池组的电压进行测量,并且不受串联节数的限制,而对串联电池组中的第一节单体电压不用采用该电路测量,可直接测量或者通过电阻分压得到。该电路的工作原理如下:在电路正常工作时,运放处于放大状态,运放的1、3脚为虚短虚断状态,即3脚的电压等于CELLn+1端的电压,而由于运放的输入阻抗非常大,因此电阻R3上的电流可忽略,在电阻R1上就是一节单体电池的电压,流过电阻R1的电流大小为:
相关文章
- 2023-03-02智能化色谱分析软件的研究与应用探讨
- 2024-02-26实现同一分析周期内两流路并行分析的技术改造
- 2024-07-09多CCD拼接相机中图像传感器不均匀性校正
- 2022-04-27监控摄像机日夜及彩色黑白转换两用简析
- 2024-07-31铁路客车提速轴承外圈非基准端面挡边平行度测量仪的研制



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。