航空航天焊接视觉传感及自动跟踪技术
航空航天焊接视觉传感及自动跟踪技术
焊接在航空航天制造中占据着重要位置,是实现复杂结构设计方案、保证设计选材灵活性的重要技术。采用先进焊接工艺、实现焊接过程机械化和自动化、扩大计算机技术和机器人在焊接中的应用,是提高航空航天产品质量,保证飞行器的安全、可靠性,改善结构设计和加工工艺性的关键所在。在焊接过程中采用视觉传感方法实时获取焊接区及邻域信息,具有信息量大、灵敏度和精度高、抗电磁干扰能力强、传感器与工件不接触等优点,通过先进合理的图像处理,可在焊缝跟踪、质量控制、焊后无损检测等方面发挥重要作用,在航天航空制造等众多行业领域中有着广阔的应用前景。
航空航天制造领域焊接特点及其对焊缝自动跟踪的要求
在航空航天制造领域,飞行器承力构件、发动机构件、燃料贮箱、机载设备等的制造都离不开焊接。对产品制造精度的高标准要求、待焊工件的安装误差、出于某些力学考虑对被焊工件进行软态约束从而导致焊接过程中产生的变形,这些因素都使得有必要对焊缝进行自动跟踪。与其焊接在以下几个方面具有特殊性:
(1)焊接路径的复杂性。
由于航空航天结构的特殊性,焊接轨迹常为复杂的空间曲线,如运载火箭燃料贮箱结构。此时采用有效的焊缝跟踪和焊炬姿态调节是焊接过程稳定性和焊接质量可靠性的保证。为提高结构性能或实现特殊功能,在航空航天制造中常需要使用焊接手段将小型元部件组合连接成特定的大型复杂结构,如运载火箭尾喷管结构,这同样需实现对复杂空间路径的自动跟踪,同时进行焊枪姿态的相应调整。航空航天制造过程中的多位姿焊接对视觉传感及信息处理的准确性和实时性提出很高要求。
(2)被焊工件材料的光学特性。
航空航天制造所涉及的被焊工件,既有合金结构钢和不锈钢,也有高温合金、铝合金、钛合金、甚至复合材料等。对于视觉传感而言,这些材料所表现出的光学特性(反射强度、纹理质地、颜色特征等等)都值得关注和研究。某些材料对电弧等外部光源有强烈的反射,就必须在视觉传感的光路设计中采取措施降低其负面影响。而某些材料在焊接中因氧化等原因会具有新的颜色特征[1],可为焊缝无损检测轨迹视觉自动引导提供基础。另外,不同材料在焊接过程中的熔化现象也各不相同,熔池和邻域信息以及焊缝成形的光学特征也是焊接视觉传感重点关注的对象。
(3)焊接工艺方法的特点。
航空航天制造涉及了多种电弧焊、电阻焊、激光焊、电子束焊等。不同的工艺方法在工件材料、坡口形式、焊缝特征、光学环境和视觉信息等方面有不同特点,在焊缝跟踪精度和速度方面也有不同要求。例如,激光焊热源集中,坡口间隙小,对视觉识别精度要求较高;焊接速度快,对焊缝跟踪实时性要求较高。而各种材料的明弧焊及其他熔化焊,弧光和熔池的光强及光谱特征也各不相同,对焊缝视觉自动跟踪的光学系统和处理算法都提出了挑战。另外,在需要进行多层多道焊的场合中,为实现填充焊和盖面焊的跟踪,需要对前道焊缝表面形貌进行识别。航空航天领域制造质量意义重大,经常进行的焊后无损检测也对已完成焊接的焊缝自动跟踪提出需求。
相关文章
- 2022-05-24基于现场总线监测系统的PLC控制制造系统
- 2024-04-10极紫外望远镜各通道夹角的测量
- 2024-08-02基于干涉原理的高精度直线度误差测量
- 2024-03-20寄生虚反射对外差干涉椭偏测量的影响
- 2024-06-07电流变液减振器在抑制深孔切削颤振上的研究



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。