基于nRF24L01和PIC16F877无线数据传输系统设计
引言
在工业控制现场, 常常需要采集大量的现场数据, 如温度、湿度、气压等, 并将这些数据传输到主机进行处理,由主机根据处理的结果, 将控制信号传输给现场执行模块进行各种操作。可以看出数据从采集设备到处理终端,监测控制指令从处理终端到采集设备,均需经过传输过程这一重要环节。当数据采集点处于运动状态,或者所处的环境不允许铺设电缆,采集设备必须与终端设备分离,此时只能通过无线方式进行数据传输。基于此,本文设计了一个无线数据传输系统,它应用Microchip公司的PIC16F877单片机控制Nordic公司的无线数字传输芯片nRF24L01 ,通过无线方式进行数据双向传输。实验结果证明:该系统使用灵活、成本低廉,可方便地嵌入到无线监测系统中。
1.系统总体结构设计
图1为系统设计总体框图。此无线数据传输系统主控制芯片采用Microchip公司的PIC16F877微处理器,它负责控制无线芯片L01,实现数据的无线传输。为了进行多通道的数据采集,这里采用10片A/D进行分时采样,它们的工作时序则由CPLD来控制,每路采集的数据经单片机处理后无线发射,至于何时采样,则由单片机发的Trigger信号决定。 在与计算机的通讯方面,系统采用USB芯片通过USB口将无线接收数据送入计算机,并存储在一个二进制文件内,当传输完毕后,运行VB读数软件,可将采集的信号读出以供分析。
2.系统硬件设计
2.1 数据采集部分
数据采集部分主要由传感器、低通滤波放大器、A/D以及CPLD组成,电源管理则主要为各个芯片提供合适工作电压,并为CPLD提供1MHZ主时钟输入。此系统采用10片AD7492,可进行10路模拟信号的采样。CPLD主要控制10片A/D的采样和读数时序,采样率由CPLD内部分频器和无线传输率大小决定。为了配合无线传输模块的工作,这里采用触发采样。即在CPLD内部设计D触发器,并用VCC连接D输入端,Trigger信号作为时钟输入,如图2所示。系统上电后,CPLD便检测其引脚Trigger端,当出现上升沿时, D触发器输出高电平,打开与非门,Convast就会输出1KHz信号,A/D采样开始。
2.2 无线传输部分
数据传输主要利用PIC16F877单片机对无线射频芯片L01的控制实现的。nRF24L01是单片射频收发芯片,工作于2.4~2.5GHzISM频段,工作电压为1.9V~3.6V,工作温度为- 40℃~+ 85℃,有多达125个频道可供选择,最高通信速率2Mbit/s ,具有自动应答和重发功能,其工作参数全部通过芯片状态字配置,而这些配置字是由PIC16F877通过SPI[1]访问L01的。L01主要技术为:
相关文章
- 2024-07-31铁路客车提速轴承外圈非基准端面挡边平行度测量仪的研制
- 2024-07-09多CCD拼接相机中图像传感器不均匀性校正
- 2023-03-02智能化色谱分析软件的研究与应用探讨
- 2022-04-27监控摄像机日夜及彩色黑白转换两用简析
- 2024-02-26实现同一分析周期内两流路并行分析的技术改造



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。