二极管箝位中压三电平变频器系统设计
1绪论
中压大功率传动系统已在工业生产中得到了广泛应用,例如石化行业中的管道泵、水泥行业中的风机、水泵站的供水泵、运输行业中的牵引机械以及冶金行业中的轧机等。与低压传动相比,中压传动在很多方面都有更高的技术要求和挑战。在低压传动中,一些无足轻重甚至根本不存在的问题,在中压传动中却是必须解决的问题,这些技术难点大体包括:与网侧整流器电能质量相关的技术要求、与电动机侧逆变器设计相关的技术难点、开关器件的限制和传动系统的整体要求等。传统的两电平逆变器在大功率应用时存在许多问题:需要笨重、耗能、昂贵的变压器;为了得到高质量的输出波形而提高开关频率,造成很高的开关损耗,而为了适应高电压的要求,需采用器件串联,因而需要复杂的动态均压电路。为此,德国学者Holtz于1977年提出了三电平逆变器的电路拓扑,其中每相桥臂带一对开关管,以辅助中点箱位。后来,1980年日本学者Nabae在此基础上继续发展,将这些辅助开关变为一对二极管,分别与上下桥臂串联的主管中点相连,以辅助中点箱位。该电路比前者更易于控制,且主管关断时仅承受直流母线一半的电压,因此更为实用。
2三电平变频器主回路设计
三电平变频器主电路示意图如图1所示。其中,移相变压器一次为△接,二次侧分别为Y接和△接的两个对称绕组。两个二次绕组的输出分别经过两个完全相同的6 脉波整流单元形成12脉波整流器。12脉波整流器可使各6脉波二极管整流器产生的低次谐波相互抵消,从而降低网侧电流的谐波畸变,提高网侧的功率因数。一般来说,二极管整流器脉波数目越多,输出网侧电流的谐波畸变越小。但在实际产品中很少采用脉波数多于30的二极管整流器,主要原因在于变压器的成本会增加很多,而性能的改变却不明显。因此,本文采用12脉波二极管整流。
图1 二极管箝位的三电平变频器主回路
由图1可见,每一个桥臂上有4个IGBT、2个箝位二极管和4个反向恢复二极管。以A相为例,当 和 或者它们的体二极管导通时,电机定子A相电压为 ;当 和 或者们的体二极管导通时,定子A相电压为 ;当 和 导通时,定子A相电压为0。 和 不可能同时导通,哪一个导通取决于A相负载电流的方向。因此,对于三电平逆变器来说其交流侧电压有 、0、 3种状态,3个桥臂进行组合,共有 =27种开关状态,即有27个空间电压矢量。该拓扑结构的不足之处在于:三电平及以上逆变器需要器件数量较多,控制复杂性明显增加以及中性点电压发生波动。
相关文章
- 2022-04-27监控摄像机日夜及彩色黑白转换两用简析
- 2023-03-02智能化色谱分析软件的研究与应用探讨
- 2024-07-31铁路客车提速轴承外圈非基准端面挡边平行度测量仪的研制
- 2024-07-09多CCD拼接相机中图像传感器不均匀性校正
- 2024-02-26实现同一分析周期内两流路并行分析的技术改造



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。