高压静止无功补偿器的研究
1 引言
目前,我国电网的建设和运行中长期存在的一个问题是无功补偿容量不足和配备不合理,特别是可调节的无功容量不足,快速响应的无功调节设备更少。近年来,随着大功率非线性负荷的不断增加,电网的无功冲击和谐波污染呈不断上升的趋势,无功调节手段的缺乏使得母线电压随运行方式的改变而变化很大,导致电网的线损增加,电压合格率降低。此外,随着电网的发展,系统稳定性的问题也愈加重要。动态无功补偿技术是一种提高电压稳定性的经济、有效的措施。另外,动态无功补偿技术在冶金、电气化铁路、煤炭等工业领域的客观需求也很大。在目前情况下,采用tcr静止型动态无功补偿装置(svc)对于消除轧机和其他大型电动机等对称性负载所产生的无功冲击是很有效的,电网电压波动明显改善,功率因数明显提高,是一种技术含量高、经济效益显著的新型节能装置。
2 svc的基本类型和结构
svc的补偿原理是通过控制晶闸管触发角,改变接入系统中的svc等效电纳的大小,从而使svc达到调节无功功率的目的。静止无功补偿器主要有以下两大类型:一类是具有饱和电抗器的静止无功补偿装置(saturatedreactor- sr);第二类是晶闸管控制电抗器(thyristor control reactor—tcr),晶闸管投切电容器(thyristor switch capacitor- tsc),这两类装置通称为svc (staticvar compensator)。
2.1 具有饱和电抗器的无功补偿器(sr)
饱和电抗器分为自饱和电抗器和可控饱和电抗器两种,相应的无功补偿装置也就分为两种。具有自饱和电抗器的无功补偿装置是依靠电抗器自身固有的能力来稳定电压,它利用铁心的饱和特性来控制发出或吸收无功功率的大小。可控饱和电抗器通过改变控制绕组中的工作电流来控制铁心的饱和程度,从而改变工作绕组的感抗,进一步控制无功电流的大小。sr的缺点是:造价高、损耗大、有振动和噪声、调整时间长、动态补偿速度慢。由于具有这些缺点,所以饱和电抗器的静止无功补偿器应用的比较少。
2.2 晶闸管投切电容器(tsc)
单相tsc的原理,是采用两个反并联的晶闸管起到将电容接入电网或从电网中断开的作用,而串联小电感可以抑制电容器投入电网时可能产生的冲击电流。tsc的关键技术是投切电容器时刻的选取。经过多年的分析与实验研究,其最佳投切时间是晶闸管两端的电压为零的时刻,即电容器两端电压等于电源电压的时刻,此时投切电容器,电路的冲击电流为零。这种补偿装置为了保证更好的投切电容器,必须对电容器预先充电,充电结束之后再投入电容器。tsc的优点在于它能对三相不平衡负载进行分相补偿,操作中不产生有害过电压,但是它对于由于负载的突变引起的电压闪变,单靠电容器投入电网的电容量的变化进行调节是不够的,因此tsc装置一般与电感相并联,采用tcr与tsc配合使用构成混合型补偿器,这种补偿器以电容器作分级粗调,以电感作相控细调。但是,svc装置在动态调节无功功率时不可避免的会产生大量谐波,需要将固定电容器和电感串联构成谐波滤波器来滤除谐波。而且svc运行时电容和电感的一部分容量相互抵消,不经济,且电容分组不连续投切会影响调节质量。
相关文章
- 2024-07-31铁路客车提速轴承外圈非基准端面挡边平行度测量仪的研制
- 2022-04-27监控摄像机日夜及彩色黑白转换两用简析
- 2023-03-02智能化色谱分析软件的研究与应用探讨
- 2024-07-09多CCD拼接相机中图像传感器不均匀性校正
- 2024-02-26实现同一分析周期内两流路并行分析的技术改造



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。