金属构件超声波探伤影响因素的研究
在金属构件超声波探伤过程中,有很多因素会影响到检测的效果,如耦合剂、试件的材料及表面情况、探头的频率和类型等.针对金属试件进行实验,在不同耦合剂和探头频率条件下,通过对超声波回波峰值衰减情况及对两影响因素的显著性分析,提出了在纵波检测情况下,不同金属构件超声波检测的耦合剂和探头频率的最优组合,对实际探伤过程具有一定的指导意义。
基于多层降噪处理的轴承故障特征提取方法
针对滚动轴承振动信号的故障信息难以准确获取问题,提出一种新的基于多层降噪处理的轴承故障特征提取方法。所提方法首先依据小波包变换原理处理原始轴承信号,消除噪声干扰;变换后的振动信号用经验模态分解方法处理可得若干个IMF分量,计算所得分量与变换所得信号间的互相关系数,并依据相关系数准则筛选有用分量完成振动信号的重构;再通过自相关方法剔除重构信号中的混叠干扰信号,实现振动信号的多层降噪;最后对去噪后的重构信号解调处理,获取信号包络谱图并分析,得到所需故障特征。试验结果表明该方法能够有效地消除原始信号中的干扰和噪声,分离出清晰的故障振动信号并获取有用的故障特征。
基于小波核Logistic模型的运行可靠性评估
为了解决深孔加工过程中刀具的磨损状态难以监测及其可靠性评估过程中样本难以获取的情况,提出了一种基于小波核Logistic模型的深孔加工运行可靠性模型。在该方法中,首先,建立了小波核Logistic模型以解决小子样情况下的可靠性评估问题,其次,以刀杆自激振动相对小波能量及从电流信号提取的切削力比为模型输入参数以解决状态难以监测的问题;最后,用一个深孔加工实验对模型进行了验证,结果表明该方法具有一定的实用价值。
支持向量空间方法在刀具运行可靠性评估中的应用
针对单台或小样本数控机床刀具可靠性评估时,传统的基于大样本统计的可靠性评估方法因缺乏时间、动态、个性化的精确性描述而难以发挥作用。为了提高单台或小样本条件下的机床刀具运行可靠性评估精度和可信性,作者提出了一种基于奇异值分解(SVD)和支持向量空间的运行可靠性评估方法。首先通过实验对机床切削加工过程中的刀架振动信号进行获取,采用小波包分解、能量分布和时频域统计量分析,提取出与刀具磨损量密切相关的显著特征指标。为了降低计算复杂程度和减小冗余成分,进一步利用SVD对所提取的刀具正常磨损条件的振动信号时频域高维特征数据集进行降维处理。然后将降维数据作为测试样本代入支持向量空间模型构造支持向量空间超球体,以该超球体所定义的圆心和半径为计算依据,将待检样本相对于超球体的相对距离作为描述刀具...






