碧波液压网 欢迎你,游客。 登录 注册

基于KPCA与模糊积分的燃气轮机状态识别方法

作者: 崔建国 刘瑶 于明月 蒋丽英 王景霖 江秀红 来源:振动.测试与诊断 日期: 2021-04-26 人气:128
基于KPCA与模糊积分的燃气轮机状态识别方法
针对舰用燃气轮机结构复杂、工作环境恶劣,难以对其状态进行有效识别问题,提出一种基于核主元分析(kernel principal component analysis,简称KPCA)和模糊积分相结合的状态识别新方法’采用专用试验平台对舰用燃气轮机进行试验,获取其不同工况下的高压转子转速、低压转子转速、涡轮后排气温度及机匣振动等I个状态表征参数的原始信息,采用EPCA方法提取其状态表征参数的不同核主元,构建特征向量空间。并由提取的核主元特征向量分别创建GRNN,Elman神经网络状态识别模型,对燃气轮机状态进行识别。在此基础上,采用模糊积分方法对两种状态识别结果进行决策层融合,得到唯一的状态识别结果,提升了状态识别准确率。研究表明,采用核主元分析和模糊积分相结合的方法,能有效识别出舰用燃气轮机健康与故障状态,具有很好的实际应用价值。
    共1页/1条