滑翔制导炮弹气动-弹道综合优化方法
针对滑翔制导炮弹的气动、弹道设计问题,为有效提高炮弹的滑翔性能,本文研究了一种气动-弹道综合优化方法。该方法采用工程算法进行气动分析,采用自适应配点的Radau伪谱法进行弹道分析,可综合考虑气动外形的静态参数优化和滑翔过程中攻角控制规律的动态优化;利用Kriging模型建立了炮弹外形参数和性能指标(如射程、飞行时间等)之间的映射关系,实现了外形优化和弹道优化的紧密耦合,并利用组合加点准则不断更新模型直至收敛得出最优外形和最优弹道。本文分别以射程最大和飞行时间短/控制能量消耗小为目标函数,对某滑翔制导炮弹的鸭舵、尾翼外形参数进行综合优化。仿真结果表明,相较于基准方案,综合优化方案有着更优异的弹道性能,其中Opt-1方案使射程提高了37.8%,Opt-2方案在攻击固定目标时能有效减少飞行时间并使控制能量消耗降低46%,验证...
内置隔板和前缘喷流对机翼油箱热防护的影响
为了研究飞机在超声速巡航状态下的气动热效果及对机翼进行相应的热防护设计,该文分析了内置隔板和前缘反向喷流2种不同热防护的防热效果。采用Spalart-Allmaras(SA)湍流模型求解Navier-Stokes方程,对NACA23012翼型在不同马赫数下的气动加热进行了数值分析,并对机翼油箱的热防护进行了研究。结果表明:2种热防护的降温及防热效果均会随来流马赫数的增加而增强;翼型的不对称性会导致上下翼面流场特性的不同,从而产生上下翼面热防护特性的明显差异;当来流马赫数较大时,在降低机翼表面温度及油箱热负荷方面,喷流作为主动式热防护的防热效果要明显优于被动式隔板热防护的防热效果;当来流马赫数为3.0,喷流流量为0.0018 m 3/s时,机翼下翼面平均温度可降低约46.7%。
不同热边界对超音速机翼气动热数值分析的影响
飞行器在超音速飞行时受到的气动加热效应给结构强度及热防护设计带来极大影响,且真实状态下的气动热环境需要考虑外流场与结构的耦合及内壁面边界条件的影响。采用S-A湍流模型求解Navier-Stokes方程,通过流场与固体壁面交界处的信息传递,实现外流场与结构场的耦合数值分析。针对三种不同翼型的超音速绕流气动加热进行耦合数值研究,对比翼型内壁面在不同热边界条件下的气动热效应。结果表明:不同翼型具有与气动力相似的气动热效应,内壁面考虑对流换热的边界条件最接近真实,考虑机翼燃油箱满油时,三维机翼前缘驻点处热流密度最高可达4200W/m^2。
-
共1页/3条





