离轴非球面轮廓测量导轨直线度误差补偿模型
由于研磨阶段非球面的面形误差将由几十微米收敛到几个微米,因此采用高重复精度的离散测量技术是决定误差收敛效率、影响加工进程的关键.在新一代数控光学加工中心(FSGJ-Ⅱ)上,设计了双测头对非球面进行面形定量检测的轮廓测量机构.通过对测头运动导轨在x、z方向的直线精度的分析,建立了导轨直线度误差补偿模型,以较低的成本实现了较高的测量精度.
非球面零件光学检测技术研究
针对非球面零件光学级检测技术进行广泛探讨,并针对课题研究中一抛物面镜实例,设计出实用型Dall补偿器,经优化后,保证检测面形精度达到0.004λλ=632.8nm。
大偏离量非球面最接近球面的确定方法
能否在元件铣磨成形阶段制造出与要求非球面元件最为接近的球面是确保实现对大口径离轴非球面元件快速制造的关键一步。该文研究在同轴圆形非球面元件最接近球面半径确定方法的基础上,建立了离轴非球面元件坐标系与机床加工坐标系之间的变换矩阵,并以非球面与比较球面之间残余矢高作为评判参量,分别构建了材料去除量为正准则和材料去除余量最小准则的判断方法。最后以一块770mm×220mm的矩形离轴非球面反射镜为实例进行了模拟分析,确定了其最接近球面半径,通过实验发现加工去除余量大大减少,提高了制造效率,缩短了周期。
磁流变抛光光学非球面元件表面误差的评价
正确评价抛光后光学非球面元件表面面形的波前畸变是确保实现光学非球面元件超精密制造的关键。该文提出了结合功率谱密度法和残余误差法并考虑非球面元件表面中频误差的综合评价方法。将提出的综合评价标准应用到磁流变数控抛光过程中,进一步明确了表面残余误差与抛光工艺参数之间的关系,建立了有效消除表面残余误差的抛光工艺规范。按照这一工艺规范制造出一块抛物面光学反射镜,其面形精度达到A/30(λ=0.6328μm),残余误差为3λ/1000。该方法可为深入开展高精度磁流变抛光技术研究提供参考。
-
共1页/4条






