EMD-AR谱分析和SVM的变速箱故障诊断
针对特种车辆变速箱工作环境恶劣、故障模式难以识别的问题,在现有方法基础上,将EMD分解和AR谱估计相结合,应用于变速箱故障诊断中。首先,在自行搭建的实验台上采集变速箱正常、轴承间隙故障、外环压痕、齿轮断齿4种典型状态下的振动信号;然后采用EMD-AR谱进行分析,对比不同状态下信号前6个IMF分量的AR谱,再提取EMD-AR谱能量特征值,将特征值输入到构建好的SVM分类器中,根据输出结果识别变速箱的故障类型。结果表明,该方法能有效应用于特种车辆变速箱故障诊断,诊断正确率达到94.5%,为其他特种变速箱诊断提供了一种有效的参考途径,有一定工程实用价值。
基于AR的二维隐Markov模型离心泵故障诊断方法
离心泵速度变化过程的振动信号具有信息量大、非平稳、重复再现性不佳等特点,二维隐Markov模型(2D-HMM)很适合处理此类信号。利用AR谱不受数据长度的限制,AR模型参数对状态变化规律反映敏感的特点,以振动信号做自回归变换后的AR谱系数作为特征向量,将基于AR的2D-HMM引入到离心泵故障诊断中,提出了一种基于AR的2D-HMM故障诊断方法,并论述了该模型的拓扑结构和主要参数以及相应的训练和识别算法。最后通过2BA-6A离心泵试验系统验证了方法的有效性。
-
共1页/2条




