利用特征融合提升深度学习图像检索算法
基于卷积神经网络提取图像特征的方法被广泛应用到图像检索中,主要研究内容为设计良好的特征提取方式。为了提高图片全局特征评估检索准确率,对基于特征融合的深度学习图像检索算法进行分析。通过对不同特征提取方式进行测试,提出融合不同卷积层进行特征提取的策略,并且对提取效果进行分析。测试结果显示,检索准确率比单层卷积层提取特征的准确率要高;利用注意力机制融合特征发现通道信息的注意力机制可以提高检索准确率,而空间信息的注意力机制会降低原始信息的可区分度和检索准确率。
改进U-Net网络的高纹理表面缺陷检测方法
缺陷检测是生产实践中非常重要的一个环节。产品表面往往存在丰富的纹理信息,纹理信息很容易导致缺陷误判。针对传统算法在缺陷检测中的局限性,提出了一种改进的U-Net模型来进行高纹理表面缺陷检测。该模型在下采样采用特征融合策略,以减少细节的丢失;在上采样采用多尺度融合策略,获取不同感受野下的丰富信息;用空洞卷积代替部分普通卷积,增加感受野来防止边缘细节的丢失。同时,模型中还采用联合损失函数进行训练,并通过参数优化提高收敛速度。最终,通过对高纹理表面缺陷数据集上进行实验,验证改进的U-Net模型与原始U-Net模型以及SegNet模型、基于滑动窗口的CNN等同类方法进行客观比较,并对实验结果进行可行性分析,提出的模型表现出更精确的检测精度和更好的性能。实验结果表明改进的U-Net模型可以更好的适用于实际生产过程的缺陷检...
改进的SSD生活垃圾检测算法
针对目前垃圾资源化利用的问题,为提升垃圾分拣工作的速率,并减少人工成本,通过对目标检测算法SSD(Sin?gle Shot Multibox Detector)的研究与分析,提出了基于改进的SSD垃圾分类算法,对基础特征提取网络VGG16参数量大、检测性能低等问题,使用DenseNet的网络结构,加深网络层数,并使用通道叠加的方式加强信息传递,从特征复用的角度上加强网络性能;对原网络对于小目标检测能力弱的问题,利用FPN结构加强特征图中包含的语义信息,提高对小目标的检测能力;对原损失函数在模型评估时的不等价情况,引入GIoU损失提高定位精度。这里的算法在PASCAL VOC数据集与自己制作的生活垃圾检测数据集上测试,其中在PASCAL VOC数据集上的检测结果显示,这里的算法相比于SSD300和SSD512分别有1.7%和1.9%的提升;在生活垃圾检测数据集上,分别有2.1%和3%的提升。
小波包和模糊熵特征融合的轴承故障诊断
进行轴承多种类型裂纹故障诊断时,为解决单一特征量诊断效率低的问题,提出了基于信号小波包分解的精细时频域分析和模糊熵的特征融合方法。首先对轴承振动信号进行小波包4层分解重构,确定小波包系数模糊熵和频带能量,精细提取振动信号的高低频故障信息特征;然后基于权重指标对模糊熵和频带能量进行融合,构造多种故障状态下轴承信号的特征向量;最后选择适合小样本分类的支持向量机对轴承裂纹故障进行诊断。试验数据处理结果表明,轴承不同裂纹故障状态下,融合特征的方法诊断效率更高,相较于单一特征量识别准确率提高5.0%以上,对10种裂纹故障诊断正确率达到98.0%。
基于自适应VMD与GRNN的转子系统故障诊断方法研究
提出一种基于自适应变分模态分解(Variational Mode Decomposition,VMD)与广义回归神经网络(Generalized Regression Neural Network,GRNN)的故障诊断方法,有效解决转子系统振动信号特征提取与复合故障模式识别的问题。首先通过VMD将采集到的原始信号自适应分解为一系列的内涵模态分量(Intrinsic Mode Functions,IMF),然后根据相关系数-峭度准则选取IMF分量进行信号重构。最后获取重构信号的精细复合多尺度散布熵(Refined Composite Multiscale Dispersion Entropy,RCMDE)、均方根以及重心频率构成特征向量集,输入到GRNN神经网络进行训练和故障模式识别。数值仿真与故障模拟实验结果表明:采用基于自适应VMD与GRNN神经网络的方法可有效识别转子系统中的多故障模式。
基于改进BiFPN的微特电机电枢表面缺陷检测方法
针对现有微特电机电枢表面缺陷检测方法存在检测精度不高,特别是对相似性工件容易误判等问题,结合深度学习的方法,提出一种基于改进BiFPN的电枢外观缺陷检测方法。工业相机采集到的电枢图像通过匹配算法经过裁剪得到ROI,将ROI输入到EfficientNet结构,进行基础特征提取;采用通道注意力机制增强改进的BiFPN结构,对提取出的不同维度特征进行融合,并对特征进行筛选;使用分类器输出最终检测结果。结果表明:该电枢外观缺陷检测方法检测准确率优于ResNet和EfficientNet等深度学习检测方法,其检测准确率高达98.42%。研究结果对相似性较大的微特非标工件的检测性能提升有积极意义。
基于多指标优化TQWT和TEO的轴承声发射故障诊断
针对滚动轴承早期故障声发射信号存在信噪比低、调制成分复杂导致故障特征难以识别的问题,提出一种利用多特征指标优化的可调Q因子小波变换(TQWT)和Teager能量算子(TEO)结合的故障诊断方法。以峭度-波形信息熵指标对TQWT参数(主要是品质因子Q)进行自适应选择,分解得到一系列子频带;然后,结合峭度、峰度、稀疏值组成融合指标对子频带进行筛选,对选出的子频带降噪后重构信号;最后求得重构信号Teager能量算子解调谱,通过对解调谱分析得到轴承故障特征信
基于脊线信息增强与特征融合的瞬时转频估计
转速获取是变工况设备健康诊断的前提。在不便安装速度传感器的情况下,基于振动信号时频分析获取转频是最常用的途径。然而,由于时频分析方法的自身特性和采集的振动信号中往往包含大量的背景噪声,导致得到的时频分布能量聚集性差、部分时段转速信息微弱等问题,很难提取到完整、准确的转频信息。为解决这一问题,提出一种脊线信息增强与特征融合的转速估计方法。采用幅值累加平方策略对时频分布特征进行增强;从信号低频区域和共振频带分别预估计出转频信息;最后,建立基于概率分布和局部波动特性的信息融合准则,以确定脊线融合位置以及融合结果,实现转频的准确估计。轴承故障实验信号验证说明相比于传统的转频提取方法,提出的方法能够显著地改善能量微弱的转速信息的识别结果。










