基于相关向量机的故障诊断方法研究
相关向量机(RVM)是目前最受关注的新一代模式识别技术之一,阐述了基于相关向量机的故障诊断方法、应用前景等。介绍相关向量机的分类、回归模型及其国内外研究进展;对RVM提出至今在故障诊断和退化评估与寿命预测中的应用研究进行综述;最后分析在故障诊断中RVM方法存在的弊端及其未来研究趋势。
基于特征融合与HPO-RVM的滚动轴承剩余寿命预测
为准确预测轴承的剩余使用寿命,提出基于特征融合与猎食者-猎物优化(HPO)算法优化相关向量机的轴承剩余寿命预测方法。提取时域、频域和时频域特征准确描述轴承的退化状态,利用综合评价指标对提取的特征进行筛选得到敏感特征集;采用核熵成分分析对敏感特征进行自适应融合,得到轴承的退化特征;构建混合核函数作为相关向量机的核函数以提高模型预测性能;最后,利用HPO算法得到混合核函数的参数,将寻优得到的参数用于寿命预测模型的训练。通过对轴承加速退化数据集进行实验,结果表明:所构建的寿命预测模型优于BP、ELM、SVM等模型,构造的混合核函数模型优于高斯核函数模型,采用的优化算法优于粒子群、遗传算法等。
基于改进LFQPSO优化MRVM的轴向柱塞泵故障诊断
针对传统粒子群优化算法以准确率或误判率作为适应度函数耗时长和轴向柱塞泵故障机制较为复杂的问题,提出一种基于改进适应度函数的Lévy飞行量子粒子群优化(QPSO)多分类相关向量机(MRVM)的轴向柱塞泵概率性智能软状态判别方法。为了克服人为设定核参数不精确、效率低等缺点,采用基于Lévy飞行的QPSO搜索MRVM的最优核参数;为了缩短寻优时间,将样本间余弦相似度作为寻优算法的适应度函数,并利用UCI机器学习标准数据集进行仿真来验证改进后优化方法的
小波包能量谱和RVM在自动机故障诊断中的应用
针对传统自动机维修保障模式操作繁琐、维修周期长的问题,提出了一种应用小波包能量谱信息和相关向量机(Relevance vector machine,RVM)相结合的故障诊断方法。对每一组自动机振动信号进行小波包分解,得到不同频率成分的子频带分量,计算子分量占原信号能量的百分比,实现自动机状态信息表征,最后将特征输入RVM中进行分类识别。自动机故障诊断实例表明,该方法能较理想的实现自动机故障诊断,达到较高的诊断准确率。此外,通过对比支持向量机(SVM)的诊断结果,验证了RVM可以在很大程度上提升故障诊断的稀疏性与实时性。
-
共1页/4条






