部分断面TBM推进机构的设计及刚度性能分析
针对部分断面掘进机串联支撑机构刚度弱、异形TBM断面适应性差、开挖盲区难以处理等问题,设计了基于6-SPS并联机构的部分断面TBM推进机构,提出了考虑平台局部柔性的刚度预估模型建立方法。首先,初选地质条件,根据总推力预测模型确定推进反力、设计推进机构,在逆向运动学的基础上,采用直角坐标边界搜索法计算机构的位置工作空间;然后,通过推导支链与平台的微小位移映射,考虑支链柔性,将动平台重力视为外载荷,使用有限元软件识别平台与支链接触处的柔度系数,建立了推进机构半解析静刚度模型,借助有限元软件验证了模型的准确性;最后,对比分析了平台局部柔性对刚度性能的影响。结果表明,考虑平台局部柔性的刚度模型更精确。研究为部分断面TBM推进机构的设计及样机研制提供了理论基础。
电液伺服PID位置控制系统的仿真研究
为提高电液伺服泵控系统位置控制精度和响应速度,将液压缸位移行程分为快速、中速和慢速三段分别实施分段PID控制,在AMESim中建立位置控制系统仿真模型。通过正交试验方法选取相应仿真参数,液压缸位移目标值160mm的仿真结果为159.99mm,位置精度最高。并通过实验验证分段PID位置控制系统仿真模型的可行性。通过仿真分析发现,液压缸第一段分段PID参数对响应速度影响较大,但系数过大会引起超调;第三段参数对控制精度的影响较大,且该段PID参数不宜过大。
电液伺服泵控系统的速度控制实验研究
在提高电液伺服系统位置控制精度的同时,系统的响应速度也不容忽略。对试验台采用的电液伺服泵控系统进行了分析;设定目标位移为130mm,估算了系统液压缸到目标位置所需的最短理论时间;采用分段模糊PID控制策略,获得最优PID参数;设定位移前100mm为快速运动阶段,调节该阶段泵输出的流量与压力。实验结果发现,流量模拟量从3000增至6000时,运动至100mm的时间变化不明显,而当压力模拟量从1000增加至2200时,运动至100mm的时间可由1.41s缩短为0.78s,系统迟滞时间也从0.21s降至0.16s。结果表明,增大流量模拟量对液压缸速度提高的效果影响较小,而增大压力模拟量对液压缸速度提高效果的影响较为明显。
电液伺服泵控系统位置控制实验研究
为了提高电液伺服泵控系统位置控制精度,将液压缸位移行程分为快速、中速和慢速三段分别控制。设定液压缸目标位移为180mm,采用三种位置控制方法进行实验研究:1.对三段行程分别实施PID控制,即分段PID控制方法 2.对三段行程分别实施恒定流量和压力控制,即速度分级控制方法 3.对第一、第二段实施PID控制,第三段实施恒定流量和压力控制,即复合控制方法。实施分段PID控制时,位置误差控制在(±0.05)mm以内,约3.22s达到目标位置;实施速度分级控制时,位置误差控制在(±0.04)mm以内,约2.41s达到目标位置;实施复合控制时,位置误差控制在(±0.03)mm以内,约3.81s达到目标位置。实验结果表明:分段PID控制时第三段行程液压缸速度不可预知,易产生较大位置误差;速度分级控制时,第三段行程恒定流量和压力输出保持了液压缸的持续稳定运行,运行时间最短;复合控...
-
共1页/4条






