叶片打孔对离心风机噪声的影响分析
对离心风机叶片进行打孔处理,分析叶片打孔位置对风机噪声的影响。首先在稳态流场的计算结果上加载宽频噪声模型,得到不同工况下离心风机蜗壳和叶片上噪声分布情况,然后在瞬态分析的基础上加载FW-H噪声模块,利用LES/FW-H匹配技术分析叶片打孔对离心风机的气动噪声特性及声压级的影响。研究结果表明:离心风机结构表面声压主要集中在集流器、蜗舌和叶轮处,随着转速的增加,最大声压级也相应升高,趋势为先加快后减缓;离心风机气动噪声的频率主要集中在低中频段,且降低速度较快,在高频段则趋于平稳。与风机原模型相比,叶轮前端和中间打孔能够有效地降低噪声,噪声分别下降了4 dB和1 dB,后端打孔则会导致噪声升高。
离心式风机叶轮流固耦合下的模态振型分析
针对风机叶轮在旋转时发生耦合振动的问题,以离心式风机叶轮为研究对象,采用κ-ε湍流模型及振动力学理论,对叶轮周围流场及模态进行分析,得到不同转速下离心式风机内部流场的压力及速度分布情况。结果表明:受压较大区域分布在风机出口周围,叶轮中心速度较小,沿径向方向速度逐渐增大;随着转速增大,叶轮前4阶模态逐渐降低,后2阶模态逐渐增高。所得结论为风机叶轮的使用工况及优化设计提供了参考。
基于大涡模拟的离心风机流固耦合分析
以某型号离心风机为研究对象,针对风机叶轮在旋转时的耦合振动问题,采用大涡模拟的方法,对风机的内部流场规律进行数值分析,并与采用RNGκ-ε模型的分析结果对比。利用大涡模拟的数值分析结果对风机叶轮进行单向流固耦合分析。结果表明:大涡模拟得到的分析结果更加精确,更能表现出风机内部的真实流动情况;在流场方面,叶片表面的压力会随时间的变化呈现不规律的波动;在静力学方面,等效应力主要集中在叶片中间位置以及与前、后盖板接触部位,叶轮叶片的中间区域变形量较大。
-
共1页/3条





