离轴非球面轮廓测量导轨直线度误差补偿模型
由于研磨阶段非球面的面形误差将由几十微米收敛到几个微米,因此采用高重复精度的离散测量技术是决定误差收敛效率、影响加工进程的关键.在新一代数控光学加工中心(FSGJ-Ⅱ)上,设计了双测头对非球面进行面形定量检测的轮廓测量机构.通过对测头运动导轨在x、z方向的直线精度的分析,建立了导轨直线度误差补偿模型,以较低的成本实现了较高的测量精度.
应用SiC反射镜表面改性技术提高TMC光学系统信噪比
为了消除SiC反射镜的固有缺陷,提高反射式光学系统的信噪比,使用SiC表面改性技术对同轴三反射(TMC)光学系统的SiC反射镜进行了处理。首先,应用等离子体辅助沉积(PIAD)技术沉积了一层Si改性层,接着对改性层进行精密抛光,然后在反射镜表面镀制Ag膜和增强膜,最后获得了表面改性对TMC光学系统信噪比的影响。Wyko轮廓仪测试表明,SiC反射镜的粗糙度Ra由10.42nm降低到了0.95nm;镀制高反射膜后,主镜、次镜、三镜及折叠镜在0.5~0.8μm可见光波段的反射率>98%。计算结果表明,应用了表面改性技术后TMC反射式光学系统的信噪比提高了5%以上,说明SiC表面改性技术是一种提高TMC光学系统信噪比的有效方法。
真空自励研磨抛光工艺的研究
详细地阐述了真空自励研磨抛光盘的工作方式、基本原理,并在对120×120mm厚径比小于1/60的超薄镜面实际加工中,成功解决了磨头自身重力对工件变形的影响,降低了元件在加工中支撑要求,有效地解决了超薄元件的数控加工难题.
光纤点衍射干涉仪的技术研究
提出一种用光纤实现点衍射干涉的方法,由两根光纤分别传输参考光和测试光,利用单模光纤的小纤芯所产生的高质量衍射球面波进行超精面形的测量。与传统的干涉仪相比,该方法结构相对简单,误差来源少,且不需要传统干涉仪中的高质量标准面,而是由光纤提供高精度的参考波面。
基于DSP的宽动态范围莫尔条纹计数与精密细分技术
为莫尔条纹的计数与细分提供了一种基于DSP(数字信号处理器)的高速软件解决方案。它能有效的解决传统系统中计数电路与细分功能不能无缝匹配的问题,提高测量的准确性。由于采用了高速信号处理和闪烁采样技术,采用该方案的系统能处理宽动态范围的莫尔条纹信号。提供的实例能对从直流到1MHz的莫尔条纹信号进行计数与细分,对于1μm光学分辨率的光栅测长系统来说,其相应的最高测量速度为1000mm/s,细分步长可以达到nm级。
大尺寸反射镜高精度光学镜面Ni-P过渡层的制备方法
为了解决高精度光学系统中铝合金、铍反射镜易钝化、难加工的问题,采用自催化镍-磷合金作为过渡层后进行抛光的方法得到了高精度光学镜面.采用该方法所得到的镍-磷合金过渡层厚度为85gm,磷质量分数为11.88%,镀层显微硬度为730MPa镍-磷合金过渡层与反射镜结合牢固、耐蚀性较好,可通过±200℃热震试验及96h中性盐雾试验检测,适用于进行古典法抛光.经抛光后反射镜面形精度均方根值(RMS)为0.049λ(面形检测波长λ为0.6328μm),表面疵病等级为Ⅳ级,能够满足光学系统的要求.
磁流变抛光材料去除的研究
磁流变抛光是近十年来的一种新兴的先进光学制造技术,它利用磁流变抛光液在梯度磁场中发生流变而形成的具有粘塑行为的柔性“小磨头“进行抛光.被抛光光学元件的材料去除是在抛光区内实现的.首先简要阐述了磁流变抛光的抛光机理,然后利用标准磁流变抛光液进行抛光实验.研究了磁流变抛光中几种主要工艺参数对抛光区的大小和形状以及材料去除率的影响情况.最后给出了磁流变抛光材料去除的规律.
矩形口径离轴非球面在数控加工过程中的检测
介绍了空间相机中的离轴非球面第三反射镜(矩形口径)在数控加工过程中在研磨和抛光阶段的检测情况。利用自行研制的非球面测量机对研磨阶段离轴非球面的面形精度进行了测量,其最后的研磨精度达到了1μm(RMS)。抛光阶段离轴非球面的检测采用的是补偿法,其中零位补偿器是补偿检验的关键元件。该离轴非球面的最终面形达到了在200 mm通光口径内约λ/30的精度(λ=0.632 8μm)。










