双树复小波与宽度学习在轴承故障诊断的应用
针对滚动轴承时域信号难以有效提取其故障特征,且信号频谱在高低频区域内较为存在对分类无意义的冗余特征使得故障分类模型在训练过程中做无用功的问题,提出使用双树复小波进行故障特征提取。在此基础上,将双树复小波和宽度学习模型结合,提出了基于双树复小波与宽度学习的滚动轴承故障诊断方法。首先,利用双数复小波将采集到的振动信号分解为不同频带的子信号;然后提取子频带作为特征向量;最后用宽度学习对样本进行训练以完成快速故障分类。
自适应MCKD和VMD在行星齿轮箱早期故障诊断中的应用
针对行星齿轮箱早期故障信号微弱且受强背景噪声影响,致使故障信号特征频率难提取,通过自适应最大峭度解卷积(MCKD)和变分模态分解(VMD)进行早期故障特征提取。首先,利用变步长搜索,以峭度值为评判标准,搜索最优滤波器长度L;然后,将信号通过优化后的自适应MCKD算法降噪;最后,利用VMD分解降噪信号,通过包络谱进行分析,寻找故障特征频率。经仿真信号和实验信号验证,这里所提方法能够有效地提取出强噪声背景下的行星齿轮箱故障特征。
均匀稀疏矩阵的全聚焦成像算法研究
超声相控阵全聚焦成像算法作为一种后处理成像技术,虽然具有成像精度高、灵活性好的优势,但由于数据量大、计算时间长等问题,该项技术的实际工业应用受到了极大限制。针对该算法的不足,这里提出了基于均匀稀疏矩阵的全聚焦成像算法,通过减少矩阵数据量来提高成像效率。结果表明相较于传统全聚焦成像算法,基于均匀稀疏矩阵的全聚焦成像算法极大的压缩了数据规模,计算速度同比提高约38%,为全聚焦快速成像提供了一种参考方法。
改进ResNet双目视觉算法在人脸活体检测中的应用研究
r级联分类器同时提取双目图像中的人脸,将其提取到的局部人脸左右并联制作成数据集;然后把“shortcut”思想引入到残差块中提高特征的利用率,最后改进了具有注意力机制的SENet模块在SE-ResNet神经网络中的位置。利用实验室采集的图像数据进行验证,结果表明该实验测试集的平均准确率达到了98.62%,较ResNet34网络测试集的平均准确率提升2.07%,本实验对因为光线和角度变化的人脸活体检测有较好的鲁棒性。
材料力学性能测试与评价技术进展
本文通过对材料力学性能测试与评价技术发展的回顾,以及对其现代最新技术的介绍,详细论述和评价了材料力学性能测试与评价技术在材料学科的发展和新材料的研制过程中的作用。同时提出材料力学性能试验是获得材料性能数据唯一可靠的途径,是计算机进行材料模拟和建立大型材料数据库时最基础的工作,任何方法都不可能代替材料试验。材料试验与评价技术在过去、现在,乃至在将来在材料学科中占有非常重要的地位,是材料学科中的一个重要分支。
大型压机液压系统油液污染控制
分析了液压系统油液污染物的来源及对系统的危害,介绍了大型压机液压系统油液清洁度的控制方法。实践证明,先进的设计理念和严格控制安装质量,才能保证系统油液清洁度的要求。
多尺度高斯核支持向量机算法
针对支持向量机中单尺度高斯核算法存在局部风险的问题,提出一种基于核排列的多尺度高斯核算法。利用核排列这一度量标准来选择高斯核函数的尺度,并把多个弱分类器聚集成一个强分类器得到多尺度高斯核,从而构造支持向量机模型。利用UCI数据集Iris Plants、 Wine Recognition等仿真实验结果表明:所提出的基于核排列的多尺度高斯核算法比传统的单尺度高斯核算法具有更高的分类准确率。
基于流形半监督K均值算法的风力发电机故障诊断方法
针对风力发电机组SCADA监测数据海量、高维、复杂的特点,提出一种基于流形半监督K均值聚类的风力发电机组故障诊断方法。对风力发电机组SCADA数据进行分析,提取风力发电机组状态参量组成特征数据集,优化了传统K均值聚类算法,以流形距离作为相似性度量,对SCADA数据进行半监督K均值聚类分析。实验结果表明:改进的算法比传统K均值聚类算法能更有效识别风力发电机的状态。
CEEMD和MCKD的滚动轴承早期故障特征提取
当滚动轴承处于早期故障阶段的时候,受环境噪声和信号衰减的影响,滚动轴承振动信号特征频率成分难以精确提取,并且在信噪比较低时CEEMD不能很好提取微弱故障。针对上述问题,提出了基于互补集合经验模态分解(Complementary ensemble empirical mode decomposition,CEEMD)和最大相关峭度解卷积(Maxim correlated kurtosis deconvolution,MCKD)相结合的故障特征提取方法(CEEMD-MCKD)。两种方法的结合有效解决了CEEMD分解后无法提取出淹没在背景噪声中微弱信号特征的问题,又保持了信号的完备性,避免了有用信息的损失。通过仿真和试验验证了该方法的有效性及优点。
EMPE和KP-KELM在行星齿轮箱故障诊断中的应用
针对非线性、非平稳的行星齿轮箱振动信号故障特征"难提取"和基于核参数随机生成的高斯核极限学习机状态辨识模型分类精度低的问题,提出一种改进多尺度排列熵(Enhence Multi-scale Permutation Entropy,EMPE)与核极化高斯核极限学习机(Kernel Extreme Learning Machine,KELM)结合的行星齿轮箱状态辨识方法。首先,将经由形态平均滤波的行星齿轮箱行星齿轮的振动信号,借助于EMPE来获取多尺度下的排列熵值(Permutation Entropy,PE)构建高维特征向量集;其次,利用核极化(Kernel Polarization,KP)优化高斯核极限学习机的核参数σ;最后,将EMPE特征向量集作为输入,通过KP优化KELM算法的训练建立行星齿轮状态辨识模型。实验结果表明,与基于SVM和KELM的状态辨识模型相比,基于EMPE和KP-KELM的行星齿轮故障诊断方法具有更高的分类精度。












