基于深度学习的曲面玻璃表面缺陷检测方法
针对曲面玻璃表面缺陷成像难、识别准确率低等问题,提出一种基于YOLOv4的曲面玻璃表面缺陷检测方法。根据光源的方向确定平面与曲面的光学特性,采用明场背面漫射照明的方式来获得图像信息,确立打光方案后获取不同表面的缺陷图片。使用改进K-means聚类算法,采用交并比函数确定锚框的量度,解决原锚框大小不适用于玻璃缺陷小目标检测问题。将所提方法与缺陷检测主流算法对比验证。结果表明:所提改进的YOLOv4方法均值平均精度(mAP)可以达到80.14%,与Faster RCNN以及YOLOv3算法相比,mAP分别提升了8.29%和16.11%,并且有更好的鲁棒性和检测效果。
基于YOLOv5s网络改进的钢铁表面缺陷检测算法
针对目前钢铁表面缺陷检测算法存在检测精度低、检测速度慢和模型复杂度高等问题,提出基于YOLOv5s改进的钢铁表面缺陷检测算法。将SE通道注意力模块融入骨干网络中以增大缺陷特征通道权重,降低背景干扰,提高算法对缺陷特征的提取能力;在颈部网络融入STR多头自注意力模块,提高缺陷边缘纹理等细节特征的比重;改进损失函数为SIoU,缩短预测框回归收敛过程以提高算法检测速度。实验结果表明:改进算法在NEU-DET数据集上的mAP值为80.4%,较YOLOv5s提高5.5%,每秒处理帧数为100,算法体积降低约8.3%,算法计算量降低约4.3%,对比其他的目标检测算法,改进算法在检测精度、检测速度上均明显提升,模型复杂度降低明显。改进算法可满足实时钢铁表面缺陷检测需求。
低速工况下液压驱动执行器轻量化设计
为了提升液压驱动执行器的稳定性,降低低速工况下的振动情况,提出了低速工况下液压驱动执行器轻量化设计方法。构建了液压驱动执行器有限元模型,并根据该模型分析了液压缸、前端盖、活塞杆等结构的质量,依据各设计变量灵敏度的计算结果,获取质量模型优化目标函数,由此完成液压驱动执行器轻量化设计。模拟结果显示:该方法可通过变量灵敏度的计算结果,判断进行轻量化设计的变量;轻量化设计后,在低速工况下,执行器的最大应力为156.4 MPa,最大振动位移为0.0192 mm,整体总质量为7.23 kg,明显优于轻量化处理前。
基于单温度传感器的数控机床主轴热误差建模方法研究
为了提高热误差模型的预测精度和减少布置在机床内部的温度传感器数量,提出一种基于单个温度传感器数据的主轴轴向热误差辨识模型。该模型的输入由单个温度传感器采集的数据处理生成,内部参数少,利用智能优化算法的全局寻优能力辨识模型参数,减少人工干预,使得模型泛化性更强。以某型号三轴机床为实验对象,通过机床切削工件,验证模型辨识效果。通过与神经网络主轴热误差预测模型对比分析及实验验证,结果表明:提出的热误差模型预测主轴轴向
基于改进的CEEMDAN与关联维数的石化轴承故障特征提取
针对石化机组轴承振动信号难以自动区分的问题,提出一种基于改进的自适应噪声完备集合经验模态分解(CEEMDAN)与关联维数的石化轴承故障特征提取方法。选取某故障诊断重点实验室实测的轴承故障数据中4种工况下的轴承振动信号进行测试分析,采用改进的CEEMDAN分解测得的振动信号得到多个模态分量IMF,对得到的高频分量进行叠加求和后求取数据的嵌入维数和延迟时间并进行相空间重构,结合G-P算法求不同嵌入维数下的关联维数进行特征提取。通过极限学习
-
共1页/5条







