导流罩对受电弓气动噪声影响的风洞试验研究
受电弓是高速列车顶部最主要的气动噪声源,合理的导流罩设计是降低受电弓气动噪声的重要方法。通过声学风洞试验的方法,研究缩比模型导流罩对高速列车受电弓气动噪声的影响,采用远场麦克风及声阵列,给出了风速范围为200~250 km·h-1时的升弓、降弓状态下,受电弓和加装导流罩的远场气动噪声频谱、主要噪声源位置、强度和对应频带范围。研究表明,受电弓气动噪声为宽频带噪声,中频噪声源位于受电弓区域后部近车体位置,中高频、高频噪声源对应弓头和支座区域;升弓状态下,导流罩增大了弓头区域的气动噪声能量,在降弓状态下,导流罩减小了弓头和支座的噪声水平。
基于遗传算法的带内流低阻车身气动优化
通过建立18个参数的参数化模型,并开发了基于遗传算法的全局优化方法,展开带内流的车身气动优化,获得了气动阻力系数为0.261的低阻优化外形.比较最优车身的仿真和试验结果发现,气动阻力系数仅相差4%,表面压力系数和不同截面速度分布趋势相同、量值相差较小,表明所采用数值仿真方法是正确、可行的.利用本征正交分解对车身尾部截面流场进行能量分解发现,前9阶模态占总能量的54.5%;能量占比最高的1阶模态呈现出尾部拖曳涡的形态,并且拖曳涡的涡核位置不随时间变化而变化.建立了带内流的全局优化方法,获得了经试验验证的带内流低阻车身,为相关产品开发提供借鉴方法和外形参考.
整车环境下汽车空调系统气动噪声分析
针对汽车空调(Heating,Ventilation,and Air-Conditioning,HVAC)存在噪声过大导致舒适性较差的问题,通过试验为主、数值仿真为辅的方法对整车环境下空调系统气动噪声进行了研究。研究发现,空调系统产生的气动噪声呈宽频噪声特性。整车环境下空调系统辐射出来的噪声量级比自由场环境高11.7 d B(A),声压级较大的频带更宽,呈现出明显的混响场特征。在空调风机转速为7档、内循环工况时,测点C处的总声压级高达67.9 d B(A),超过企业内部标准要求1.9 d B(A)。风机是主要噪声源,应在后期降噪中加以控制。由于乘员的阻挡和衣物的吸声,乘员舱空间缩小,坐有乘员时相同测点的总声压级小1.5 d B(A),在125 Hz以上各频率段的声压级均有不同程度的降低。文中研究可为明确空调系统在乘员舱的声辐射特性和空调系统噪声控制提供参考。
三厢轿车多参数气动优化
使用遗传算法开展带内流的车身多参数气动优化,寻找气动性能优异的车身外形。三厢轿车气动阻力系数C_d和进气量的试验和数值仿真结果误差分别约为7%和6%,表明所采用的数值仿真方法正确。比较内流简化模型与真实模型得到进气量和速度云图,可以发现两者差异较小,可以采用内流简化模型进行气动优化。选取车身表面6个关键参数,建立带内流的参数化模型,基于轮盘赌选择法和Taguchi方法的遗传算法开展气动优化,得到了气动阻力系数为0.298的优化模型。对比原始模型与优化模型可以发现,优化模型尾部行李箱盖倾角和离去角均向内收缩。本文所建立的内流简化方法和多参数气动优化方法可为相关车型气动开发提供参考。
时速400 km高速列车转向架区域气动噪声控制
气动降噪控制对高速列车运行环保性和乘坐舒适性至关重要。以某时速400 km高速列车18缩比模型为研究对象,建立了基于转向架舱前缘、侧缘、后缘3种策略的6种气动降噪控制方案。通过大涡模拟得到非定常流场和气动噪声源项,采用FW-H方程和声扰动方程计算远场和近场噪声,得到不同控制方案对远场噪声、近场噪声的控制效果和影响频域范围。与风洞试验相比,远场30个测点中90%的测点总声压级偏差在3 dB(A)以内,频谱变化趋势相同,量级相差较小。在速度为400 kmh-1时,不同降噪控制方案使得远场测点的平均声压级最大减小1.4 dB(A),转向架舱湍流脉动功率级最大减小3.4 dB(A),转向架舱声功率级最大减小0.6 dB(A)。转向架舱前缘控制中直壁、排障器加厚,侧缘控制裙板高度增加、后缘控制倒圆角均可降低远场噪声水平,以及转向架舱顶板湍流脉动压力功率级。排障器...
圆柱与扭转柱杆件受电弓气动与噪声研究
受电弓气动与噪声性能对高速列车非常重要,为此开展了圆柱和扭转柱杆件受电弓气动与噪声仿真分析。与圆柱杆件相比,扭转柱杆件受电弓虽然平均阻力稍有增大,但其平均和脉动升力大幅度降低,从气动力角度来看对改善受电弓运行稳定性和受流质量有积极作用。通过对受电弓尾迹流场开展聚类分析发现,圆柱杆件和扭转柱杆件受电弓尾迹流场均存在三条闭环转换路径。与圆柱杆件相比,扭转柱杆件的第二条转换路径稍短,但第三条转换路径稍长。当下臂杆由圆柱变为扭转柱时,在高度方向将由单一的旋涡向多个正负交替旋涡转变。扭转柱杆件受电弓消除圆柱杆件受电弓的峰值噪声,总声压级减少了1.5 dB,改善了受电弓气动噪声性能。
高速列车头型近场与远场噪声预测
建立了某头型的1∶8缩比三车编组气动噪声仿真模型,采用大涡模拟获得车身湍流脉动压力,基于FW-H方程和声扰动方程分别获得远场噪声和近场噪声,从而建立一整套头型气动噪声预测方法.远场测点总声压级的仿真结果与风洞试验结果相差小于2.0dB(A),频谱变化趋势相同,量级相差较小,表明基于FW-H方程得到远场噪声的可行性.基于声扰动方程能够获得头型关键部位的总声压级,通过对比量级发现,转向架部位总声压级量级远大于其他部位,这与传声器阵列识别结果相吻合,从而验证了声扰动方程获得近场噪声结果.对比头型各部位湍流脉动总压力级和总声压级发现,转向架和排障器量级大于车窗、鼻锥和车体;与湍流脉动总压力级相比,总声压级分布更为均匀,量级更小.
汽车前侧窗表面压力激励及其源分析
汽车前侧窗表面的压力激励是前侧窗区域非定常流动和气动噪声的重要体现指标.这一区域复杂的非定常流动产生更大尺度范围的涡结构,从而导致前侧窗表面复杂的非定常压力激励.本文通过基于声学扰动量方程组(APE)的混合计算气动声学(CAA)方法分别获得汽车前侧窗表面的湍流压力激励和声学压力激励.引入动力学模态分解(DMD)对前侧窗表面的压力激励进行分析,指出湍流压力激励基于频率的区域分布特征和声学压力激励辐射声场特征.讨论了湍流压力激励、声学压力激励以及不同的激励源对车内噪声的相对贡献量.DMD识别的前侧窗表面主要的湍流压力激励是由后视镜尾迹的脱落涡产生的,其特征频率为59 Hz,与试验测量结果一致,验证了湍流压力激励计算结果的有效性.通过对比前侧窗区域空间截面上相同频率的湍流压力和声学压力的DMD模态,识别出前侧窗区...
不同雷诺数下车辆队列尾车发动机舱盖气动特性研究
数值仿真与模型风洞试验相结合研究了典型工况下两车队列中尾车发动机舱盖气动特性和两车间隔区域的流场,对比了缩比模型和实车模型对应雷诺数下车辆队列的流动形态。缩比模型仿真结果与风洞试验结果一致表明采用数值方法的可行。对比不同雷诺数下车辆队列气动特性发现,缩比模型与实车模型发动机舱盖表面平均静压分布基本相同,但在纵向对称面上,实车模型的前车尾迹比缩比模型更加上扬,底部区域气流速度更高。非定常条件下,实车模型前车尾涡相对尺度明显小于缩比模型,且扩散得更充分,尾迹区涡的分布状态更加混沌,发动机舱盖表面脉动能量的分布更加混乱。涡在两车间隔区域的运动并非简单的移动,而是一个由涡破裂、涡配对和涡融合构成的复杂过程。
D型体主被动结合流动控制研究
以简化准三维模型D型钝体为研究对象,通过数值仿真手段,利用零质量合成射流器理论进行了D型体主动流动控制和主被动结合的流体控制研究发现,在尾部分离点进行射流控制时,高频射流有助于钝体减阻,减阻效果可以达到1.78%。主被动结合的锯齿和射流加强了尾迹三维流动结构,破坏了准三维模型的展向流动结构,使得减阻效果较好。采用主被动结合控制的射流为低频和高频时减阻效果为20.86%和21.20%。












