重型汽车电控液压转向系统设计
电控液压是转向新技术,可提高车辆的转向灵活性,双向行驶汽车属于应市场需求而生,车辆双向均可驾驶、转向对驾驶员更友好,更适应特殊场合的使用。但双向行驶车辆有几个设计难点①两驾驶室可靠切换;②角度控制精确且能修正;③单向各转向模式切换流畅;④转向系统安全可靠。围绕如何解决这些困难,实现双向行驶车辆设计目标,文章介绍了一种糅合机械转向和电控液压转向的转向系统设计方案,从机械转向系统设计、电控液压转向系统设计及控制策略等方面,介绍了这套转向系统,解决了以上设计难点,并实现了样车生产。
电动汽车电控液压制动系统CarSim/Simulink联合仿真研究
针对某款国产电动汽车的电控液压制动系统,文章基于滑移率的比例-积分-微分(PID)控制提出了防抱死制动系统(ABS)模型,以改善车辆制动性能,提高在对开路面上的制动有效性和安全性。首先,使用Simulink软件建立液压电控制动系统的动力学模型;然后,基于滑移率设计PID控制器,并通过1/4车辆模型验证其有效性;最后,利用S函数将ABS控制器的Simulink模型输入CarSim平台中,开展CarSim/Simulink双平台联合控制仿真。结果表明,基于滑移率的PID控制的ABS对比无ABS的车辆,制动性能更加优越,在对开路面上制动稳定性更加明显。
石油平台电控液压升降系统简述
石油平台电控液压升降系统整个系统从功率放大到执行元件都采用液压元件,与电气元件相比,具有液压元件产生单位位移所需的力或力矩小,负载变化时能引起的负载位移小,液压系统有刚度高、时间常数小,举升能力大、冲击小的优点;液压在信号输入、检测、反馈处理部分采用电器元件。
汽车主动避撞系统主动制动实现方法
为满足汽车主动避撞系统主动制动的需要,开发了一种基于电控液压制动装置并联式液压制动系统。该系统通过电控液压装置,在需要对车辆进行主动制动时使轮缸压力迅速达到期望制动压力。利用P-模糊PID算法开发了制动压力控制器,在Matlab/Simulink与AMESim联合仿真环境下验证压力控制效果,结果表明,压力控制效果能够达到主动避撞系统对主动制动控制的要求。
基于SimHydraulics的电控液压转向系统仿真
运用SimHydraulics工具对某型农业车辆改造后的电控液压转向系统进行了仿真研究,根据电控液压转向系统工作原理图,调用工具中相应的液压元件模型,建立仿真框图。仿真结果验证了系统的可行性和有效性,为实际研制提供了理论基础;同时,该工具适用于车辆上液压系统的快速建模仿真。
集卡拖车后轮纯滚动式随动转向系统设计
本文给出了一种利用PLC、液压驱动车桥、比例液压阀等组成的集卡拖车多轴后轮全轮随动转向的控制方法,从分析转向策略入手,给出了机械液压系统和电控系统的设计思路,并对传感器选择、策略的软件实现等关键环节进行了研究,从实际运行情况看,能够提升集卡性能,较好的改善转向时后轮滑动摩擦的情况。
电液控制全轮转向系统
多轴车辆在后桥增设电控液压转向系统,可实现整车的全轮转向,对整车性能有较大提升。但由此也引出几个问题:一是车辆变成全轮转向后,原车的前桥转向机构是否需要重新设计;二是当后桥车轮不需要转向或者当电控液压转向系统失效时,如何保证后桥车轮处于直行位置且一直保持在直行位置;三是全轮转向具有多种转向模式,模式之间如何平稳的进行切换。这些问题的合理解决决定着全轮转向系统的性能。以四轴车辆为研究对象,从机械、液压、电控三方面就提出的三个问题进行着重分析。








