基于边缘图注意力网络的轴承智能故障诊断
基于欧几里德空间的数据包含着节点和边的关系信息,比传统的欧几里得空间的数据具有更多信息。然而,传统的图卷积以及图注意力网路注重于节点信息的提取,对于边的信息利用不够充分。对此,通过结合可视图算法和边缘图注意力网络(EGAT),将基于非欧几里德空间的不规则数据应用到轴承故障诊断领域。诊断过程分为两步利用可视图算法将原始信号转化为图数据;利用EGAT对故障特征进行学习,然后即可进行故障诊断。实验结果表明图卷积网络在单一轴承故障分类任务上能够达到100%的准确率,表明所提出的方法对于轴承故障诊断具有明显的作用。
轴承故障的多源异构数据特征级融合诊断方法
为了实现轴承多源异构故障数据的特征融合,达到提高故障诊断精度的目的,提出了基于深度神经网络的多源故障特征融合方法。介绍了堆叠自编码器和卷积神经网络原理;使用堆叠自编码器提取了一维振动数据的故障特征,使用卷积神经网络提取了二维图像数据的故障特征;为了充分发挥多源异构故障数据的关联性和互补性,使用深度神经网络将一维数据特征和二维数据特征进行交替优化和融合,提取更加能够反映故障特性的隐藏融合特征。以凯斯西储大学轴承故障数据为基础设计了三组实验,由实验结果可以看出,基于融合特征的故障诊断精度比单独使用一维数据特征或二维数据特征的诊断精度高10%以上,充分证明了基于多源异构特征融合故障诊断方法的有效性。
基于一维残差网络的轴承故障诊断
现有的轴承故障诊断方法依赖于人工提取特征,缺乏自适应性。卷积神经网络具有良好的特征自提取能力,可以自适应提取相关特征。但是采用传统卷积神经网络结构存在特征信息丢失的问题,残差结构可以防止特征信息的丢失,为此提出一种基于一维残差网络的轴承故障诊断方法。首先对原始振动信号进行小波阈值降噪处理,以减少噪声的干扰作用;然后将降噪信号作为一维残差网络的输入,自适应提取故障特征;最后通过Softmax分类器输出故障类别。实验结果表明,该方法与传统卷积神经网络方法相比,准确率更高。
基于C8051F340单片机的智能化轴承故障诊断仪
以滚动轴承故障诊断的共振解调原理为基础,提供了一种以C8051F340单片机为核心的智能化轴承故障诊断仪的研制方案。由模拟硬件电路获得所需的轴承振动信号之后,通过USB接口和VB6.0程序实现与PC机联机的9通道数据采集电路,将模拟信号传送至上位机并使用上位机程序进行后续频谱分析及处理,判断轴承的运行状况;最后,通过实验的方式验证了共振解调原理与本诊断仪的正确性和实用性。
基于深度学习的石化机组轴承故障诊断综述
作为石化机组的重要组成部分,轴承发生故障将导致机械运转故障进而影响企业经济效益,故而研究石化机组轴承故障预测、故障诊断具有重大意义。介绍故障诊断中早期基于信号处理的轴承故障诊断方法,阐述应用广泛的深度学习(包括卷积神经网络、迁移学习)等模型在石化机组轴承故障诊断中的应用,并展望基于人工智能的石化机组轴承故障诊断应用。
基于和的滚动轴承故障诊断研究
针对实际工况下,正常样本丰富、故障样本稀缺的类别不平衡情形,导致基于深度学习的故障诊断模型诊断能力较差这一问题,提出一种基于自适应综合采样方法(ADASYN)和Swin Transformer的故障诊断模型。使用自适应综合采样方法,改善数据分布,解决实际工况中故障样本与正常样本类别不平衡问题;使用Swin Transformer网络模型代替CNN网络,并使用深度迁移学习方法,使Swin Transformer网络模型掌握判别滚动轴承故障所需的浅层权重,深层权重通过反向传播方法训练获得;之后
采用自适应基因粒子群算法优化隐马尔科夫模型的方法及应用
针对隐马尔科夫模型参数学习算法易收敛于局部极值的问题,提出了一种自适应基因粒子群算法,并将该方法应用于隐马尔科夫模型的训练,实现对隐马尔科夫模型初始参数的优化。在基因粒子群算法的原理以及操作流程的基础上,采用了自适应的参数调整方法,提高了基因粒子群算法的优化性能。分析了所提方法的全局、局部搜索能力以及收敛速度,开展了不同状态滚动轴承的故障诊断实验和测试,并与基于粒子群算法优化隐马尔科夫模型初始参数的方法进行对比。实验结果表明,所提方法对正常、内圈故障、外圈故障以及滚动体故障轴承的诊断准确率均能达到100%,相比于基于粒子群算法优化隐马尔科夫模型初始参数的方法,最高将分类正确率提高了28.57%、分类离散度提高了268.58%,证明了方法的有效性和准确性。
基于二维互补随机共振的轴承故障诊断方法研究
一维随机共振(One-Dimensional Stochastic Resonance,1DSR)被广泛用于轴承故障诊断中。针对传统1DSR对微弱信号的检测效果不够理想,输出信号噪声大,不能准确获得轴承故障特征频率(Fault Characteristic Frequency,FCF)等问题,提出一种新的二维互补随机共振(Two-Dimensional Complementary Stochastic Resonance,2DCSR)方法并应用于轴承故障诊断。将采集到的轴承故障信号根据共振带位置进行带通滤波并解调,随后将解调信号对半分成两个子信号并输入2DCSR的两个输入端,利用输出信号的加权功率谱峭度(WPSK)指标对2DCSR系统参数进行自适应调节优化,得到最优的滤波输出信号及频谱,以识别轴承FCF并诊断轴承故障类型。数值仿真及实验结果表明,提出的方法可以有效地增强轴承FCF并提高轴承故障诊断效果。
电机轴承故障信号特征准确诊断研究
为了实现电机轴承故障的准确诊断,必须提取更加准确有效的故障特征。针对上述问题,提出基于小波包分解(WPD)和希尔伯特黄变换(HHT)的故障特征提取方法,并用神经网络进行诊断验证。小波包分解对信号突变检测优于HHT,HHT在低频检测部分比小波包分解更加有优势。结合两种算法的优点,采用小波包分解提取高频段能量特征。并利用HHT对小波包重构的低频信号进一步分析得到低频段能量特征。仿真结果表明,上述算法能够准确诊断出故障类型,提高了轴承故障诊断的准确率。通过与常见的倒频谱分析、WVD方法对比,验证了所提算法的有效性和优越性。
LTSA和KECA相结合的轴承故障诊断
针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实...












