直升机齿轮传动系统干运转研究进展
传动系统的稳定性直接关系到直升机的生存能力。战伤状态下润滑系统失效,干运转工况加速了齿轮表面损伤和破坏。齿轮干运转能力已成为衡量现代直升机的一项重要指标。回顾了齿轮传动系统干运转热分析的研究现状,从齿轮表面改性、涂层、表面结构处理、传动系统与润滑系统设计等现有提升齿轮干运转能力的方法以及试验研究等方面进行综述,总结了各种方法的应用现状,为该领域的研究和发展提供参考。
基于离散元法的弧齿锥齿轮滚磨光整工艺仿真及实验验证
弧齿锥齿轮齿面形状为空间曲面,齿面粗糙度的变化可对其啮合性能产生显著的影响,直接影响系统的振动、承载等性能。采用平行主轴式滚磨光整工艺对某航空弧齿锥齿轮的齿面粗糙度开展了理论仿真及实验研究。建立工艺运动的数学模型,推导出磨料与齿面间切削速度的公式,分析了影响结果的主要因素;借助EDEM软件的Hertz-Mindlin with archard wear模型,仿真了齿面磨损情况;采用该工艺对盘式弧齿锥齿面的表面质量进行了实验研究。结果表明,采用该工艺可使齿面毛刺消除,边角倒圆,齿面粗糙度Ra从0.8μm降至0.4μm左右,齿面形貌趋于各向同性,为后期研究齿轮接触性能和工业应用奠定了基础。
考虑温度场作用的航空锥齿轮的模态分析
在高速重载工况下,航空锥齿轮的齿面温度会大幅度提高。因此,在设计初期有必要考虑温度场作用下的模态情况。根据传统的线性模态理论,考虑转速和温度场对于刚度的影响,建立了航空锥齿轮的模态分析模型;根据该模型,对某一航空锥齿轮的从动齿轮进行了模态分析。由分析结果可知,转速对齿轮刚度会产生较大的影响且其影响不一定为负影响,而温度场分布的不均匀亦会影响模态分析的结果;转速和温度场主要影响的振型为节径型振型。
基于核极限学习机的碳化钨涂层砂带磨削表面粗糙度的研究
采用单因素和正交试验方法研究砂带磨削碳化钨涂层过程中各磨削参数与表面粗糙度的关系,发现砂带磨削碳化钨涂层的表面粗糙度的变化规律砂带粒度对表面粗糙度的影响最大;磨削时磨削压力对表面粗糙度的影响较大;砂带电动机转速频率和工件主轴旋转速度对表面粗糙度的影响较小,其中工件旋转速度影响最小。同时,应用人工智能算法,分别采用极限学习机(ELM)和核极限学习机(KELM)算法建立碳化钨涂层表面粗糙度的预测模型,进行了相关对比试验验证,KELM具有较好的预测效果。
某航空弧齿锥齿轮热-结构耦合有限元分析
根据传热学、齿轮啮合原理、摩擦学等基本理论,采用热-结构耦合理论以及有限元仿真分析方法,建立了某航空用弧齿锥齿轮副三维有限元模型,对弧齿锥齿轮副进行了结构载荷分析和整体热-结构耦合分析,并对结果进行对比分析。最后,采用KISSsoft机械传动设计分析软件对结果进行了对比分析和验证。结果表明,最大接触应力发生在啮合面上靠近齿顶处,近似呈椭圆形分布,由于本体温度场的影响,轮齿热-结构耦合分析最大接触应力相对静态接触应力和KISSsoft中的接触应力分别增加了5.3%和7.45%,说明有限元分析结果与KISSsoft解析结果的一致性,从而为弧齿锥齿轮副的结构优化和轮齿修形提供了理论依据。







