一种3K-H行星轮系自锁与效率最大化设计
行星轮系主要用于动力传递,研究其自锁及效率具有重大意义。针对一种3K-H型行星轮系进行了自锁分析与效率最大化设计。首先,运用传动比法对该轮系正反机构效率进行了计算;然后,对该行星轮系效率总结出了一个统一公式,并且通过Matlab软件绘制了效率曲线;接着,分析了该行星轮系效率变化的趋势以及能够实现自锁的条件;最后,研究了在保证自锁条件下如何实现其相反机构效率最大化的设计。
永磁轮式管外攀爬机器人结构设计与力学分析
在石油、化工等行业中,大型管道长期运输腐蚀性油气资源,需要进行定期检测。针对这一应用场景,提出了一种能够在管道外壁稳定行走且具有良好越障能力的永磁轮式机器人。该机器人采用六轮摇臂式移动机构配以永磁轮,搭载检测设备后可以代替人工进行更加安全高效的检测。根据机器人在管道上稳定吸附的力平衡条件,计算出机器人所需的最小磁力,从而确定机器人运动所需的驱动力;通过Maxwell仿真建立永磁轮的磁力分析模型,设计并确定了永磁轮的尺寸;最后,基于Adams软件进行机器人的运动学仿真,验证了机器人的越障能力。
聚酰胺热熔胶水泥砂浆的基本性能研究
形状记忆合金(SMA)驱动下热熔胶水泥基材料具有优良的自修复能力。本文对聚酰胺热熔胶水泥砂浆(PA砂浆)的工作性能、力学性能和耐久性能以及处于多次热循环条件下PA砂浆的力学性能及耐久性能进行了研究。结果表明,体积掺量1%、3%和5%热熔胶的掺入没有降低砂浆的工作性能,反而有略微的提升;随聚酰胺(PA)掺量的增加,砂浆的抗压强度和抗渗性能略有下降,而抗折强度随掺量的增加先增后减;热循环环境中PA水泥砂浆的力学性能与耐久性能都得到了很大的提升,说明PA水泥砂浆在常温马氏体状态、具有预应变的SMA的驱动下具备反复修复水泥基裂缝的潜力。
结构自保温微孔砂轻混凝土的研究
为提高结构自保温混凝土的强度、改善保温隔热性能,本文采用引气技术,对结构用砂轻混凝土进行引气,使砂轻混凝土中的砂浆具有多孔结构,与轻骨料形成微孔砂轻结构。研究结果表明,当含气量在10%~15%时,砂轻混凝土的强度可在20MPa以上,导热系数小于0.36W/(m.K)。用于240厚混凝土墙梁柱时,其平均传热系数Km<1.5,满足JGJ 134—2010《夏热冬冷地区居住建筑节能设计标准》的要求。
高强钢渣混凝土的电学及力学性能研究
通过对磨细钢渣粉的物理性质和化学成分分析,发现磨细钢渣粉中含有较高的金属氧化物,且活性指数高达107%。本文选用磨细钢渣粉作为导电相材料,以磨细钢渣粉取代水泥作为胶凝材料来制备钢渣混凝土。试验结果表明,随着钢渣粉取代量的增加,钢渣混凝土的电阻率明显下降,具有良好的导电性能;当钢渣粉取代水泥质量的10%~40%时,钢渣混凝土的抗压、抗折强度呈非线性增大,抗压强度最高可达92.1MPa。说明钢渣混凝土具有高强度和低电阻率的特征。
钢渣微粉对超高性能水泥基复合材料性能的影响
研究了铜渣微粉的火山灰活性和不同掺量对低水胶比超高性能水泥基复合材料的水化热、流动度、抗折强度、抗压强度的影响规律。试验结果表明,钢渣微粉具有比较高的火山灰活性,28d的活性指数可达到87.1;钢渣微粉掺量为10%时.累积放热量达到最大;当钢渣微粉掺量大于10%时,随着掺量的增加,累积放热量随之减少;铜渣微粉颗粒近似球体.会提高极低水胶比超高性能水泥基复合材料的流动度;钢渣微粉的掺入使超高性能水泥基复合材料的抗折强度先增加后减小,钢渣微粉掺量为10%的超高性能水泥基复合材料抗折强度最高,高达25.8MPa;钢渣微粉掺量在0-20%内,抗压强度略有降低。但仍可满足超高性能水泥基复合材料强度要求。证明了钢渣微粉可作为胶凝材料制备极低水胶比超高性能水泥基复合材料的可能性。
低水胶比水泥基复合材料的流变特性
测试了不同胶凝体系低水胶比水泥基复合材料的流变学性能、绘制了流变曲线,分析其适用的流变模型。结果表明,低水胶比水泥基复合材料表现出典型的胀流型流体特性,Bingham模型不能准确表征低水胶比水泥基复合材料的流变特性,采用Herschel-Bulkley模型更为适宜。
基于μC/OS-Ⅱ的VG2以太网和USB接口设计
采用ADChips公司的Virgine G2多媒体微处理器、Reahek公司的RTL8019AS以太网接口器件和Philips公司的ISP1161USB主/从控制器,实现微控制器扩展以太网接口和USB接口,并在VirgineG2中嵌入了实时多任务操作系统μC/OS-Ⅱ。介绍了硬件设计原理、操作系统移植及软件设计流程。该方法用于数字化家居智能控制器实现以太网和USB存储器的远/近程数据交互,具有很好的效果。
采用成型样板测量丝锥柄部环槽
分析了丝锥柄部环槽的使用原理,并提出了采用样板作为丝锥柄部环槽的加工测量方法。
实际结合面的法向接触刚度多尺度计算方法
针对结合面接触刚度解析计算与实际接触状态差异较大,基于有限元的大平面接触刚度计算由于计算量大难以实现的问题,提出一种结合面法向接触刚度多尺度计算方法。该方法在应用测量仪器获取结合面平面度、波纹度及粗糙度形貌特征的基础上,应用小波分解技术获取真实形貌特征,并基于有限元微观接触分析建立局部接触刚度与压强之间的关系,基于有限元宏观接触分析获取结合面压强分布,宏-微观结合计算获得结合面法向接触刚度。该方法具有能够真实反映结合面接触状态、计算效率高等特点,法向接触刚度试验结果表明,该方法是一种计算结合面法向接触刚度的有效方法。












