制动工况下液力偶合器流场湍流模型分析与验证
合理选择湍流模型是获取准确和可靠数值模拟结果的关键。该文采用3种湍流模型(标准k-ε模型、分离涡模型、大涡模拟模型)仿真制动工况下方形腔液力偶合器流场,提取流速场和涡量场。基于粒子图像测速(particle image velocimetry,PIV)技术测量液力偶合器制动工况下流场,将数值模拟结果与PIV试验结果进行对比,以PIV试验测量结果作为评价基准,分析采用3种湍流模型计算流场结果的差异性,完成湍流模型的适用性分析。结果表明,标准k-ε模型仿真结果与PIV试验结果误差较大;采用大涡模拟模型模拟主流区域流场结构分布更加真实,仿真结果能够较好地解释主流区域多尺度涡旋运动规律和能量耗散机理;采用分离涡模型能够更准确地捕捉近壁面和角涡区高梯度流场结构分布。研究结果可为液力偶合器流场精确计算与性能预测提供参考。
制动工况下液力偶合器涡轮轴向漩涡流场试验分析
轴向漩涡流动是研究液力偶合器能量损耗的重要基础。该文基于粒子图像测速技术采集制动工况下液力偶合器轴向漩涡流场图像,通过图像处理技术识别并提取液力偶合器外壁面上特殊几何结构所呈现的光学特征,完成流动图像动态标定。利用霍夫变化直线检测算法识别泵轮轴向流场流速方向,通过图像互相关算法并采用查询窗口偏移技术提取涡轮轴向漩涡流场结构,应用误矢量识别算法检测错误流速矢量并予以剔除,获得优化的流动图谱。研究结果表明泵轮轴向流场中液流是一种复合加速运动;涡轮轴向流场中液流是一种多尺度漩涡流动,主流区域上流速值为0.2~0.4 m/s,叶片与壁面组成的角隅区域上形成小尺度涡旋,角隅区域上流速值为0.6~1.1 m/s。上侧叶片与泵轮、涡轮交界面处的角隅区域上存在与主流循环流动方向相同的小尺度涡旋,涡量数值为?8 s?1,此处涡...
基于互相关算法的液力偶合器内部流场分析
利用PIV技术对液力偶合器内部流场进行了试验测试。针对制动工况(i=0)下液力偶合器涡轮内部流场,以PIV图像连续帧的互相关算法提取其径向切面流速分布,实现了内部流场可视化与速度定量化测量。研究了制动工况下涡轮内部流场结构特征与分布规律,分析了反向流和二次流等现象产生的原因。结果表明,合理设计偶合器内部结构,可减少反向流和二次流的产生,降低了能量损失,提高了工作性能。
基于霍夫变换的液力变矩器泵轮内部流速提取
液力变矩器传递能量的特性受其内部流场结构的影响,而内部流动特性决定其外部性能.为实现液力变矩器内部流动可视化,并在此基础上实现其内部流动速度的定量测量,提供详细且准确的流场试验测量结果,进一步完善对液力变矩器内部流动机理的研究.基于粒子图像测速(PIV)技术,对液力变矩器泵轮内部流场进行试验研究,在单次曝光下CCD相机采集泵轮径向切面流动图像,记录流场中示踪粒子的运动信息.通过图像处理技术识别流场中粒子运动轨迹的图像特征,以霍夫变换直线检测理论为指导,自动提取泵轮径向切面示踪粒子运动轨迹.由此实现了泵轮内部流动可视化,提高了流速矢量识别与量化计算效率.PIV试验测量结果能够揭示泵轮内部真实的物理流动现象和流场瞬态变化情况,为液力变矩器的性能预测及合理设计提供理论和实践参考依据.
基于粒子跟踪测速技术的液力偶合器内部流速测定方法
为了研究液力偶合器内部流场的特性,该文基于粒子跟踪测速(PTV,Particle Tracking Velocimetry)技术对矩形腔型液力偶合器进行了内部流场试验测试,利用单帧3次曝光技术记录示踪粒子不同长度3段运动轨迹,准确判断了偶合器内部流场速度方向。运用边缘检测算法提取粒子运动轨迹,引入双阈值法检测图像强边缘点和弱边缘点,利用该方法可以有效地检测出图像的单像素边缘,直观地提取粒子运动位移大小,进而获得了液力偶合器内部流场速度,实现了其内部流场可视化与定量测量。同时,可以近似估计示踪粒子的粒径大小。
基于粒子图像测速技术的液力偶合器漩涡流动特性研究
液力偶合器内部流动特性对能量的高效传递非常重要。深入研究液力偶合器内部流动机理和流场结构分布,对于优化液力偶合器腔型结构并进一步提高其工作性能具有重要意义。液力偶合器的内部流场是具有多种流动结构和多种物理效应并存的流场,存在多种复杂的流动现象,尤其在制动工况下液力偶合器涡轮内部流动是一种特殊的漩涡流动。为了研究制动工况下涡轮独立流道内漩涡流动的产生与运动,基于粒子图像测速技术(particle image velocimetry,PIV)采集涡轮径向切面流动图像。通过灰度化增强、阈值分割、边缘检测、锐化等图像处理技术识别涡轮内部大尺度漩涡流动,定性分析流场结构分布;采用连续帧图像互相关算法定量提取涡轮内部速度场和涡量场,研究涡轮内部小尺度漩涡流动;分析漩涡流动产生的原因及其对液力偶合器能量传递的影响;讨论不...
基于PIV试验的水介质液力偶合器涡轮流场仿真评价
为揭示水介质液力偶合器涡轮流场的特征及演化规律,基于计算流体动力学(CFD)技术,采用4种湍流模型(DES、DDES、IDDES、LES)仿真制动和牵引工况下的涡轮流场结构.通过粒子图像测速(PIV)试验,采用静态、动态图像标定方法实测涡轮流场图像.通过PIV流场试验结果与CFD仿真结果的对比评价4种湍流模型的适用性.结果表明制动工况下,LES模型对主流区域多尺度漩涡流场结构的仿真结果趋于真实,流速为3.52~3.81m/s,涡量为480~540s^-1;IDDES模型对叶片近壁面区域流速场的仿真表现卓越,流速为3.14~3.51m/s,而DES模型对该区域内涡量场的仿真较好,涡量为500~570s^-1.牵引工况下,DDES和IDDES模型的仿真结果失真;DES模型对主流区域漩涡流场结构的仿真效果不如LES模型,但是能够体现多尺度涡旋沿圆周方向运动的基本趋势;LES模型的仿真结果与PIV试验结果吻合,
液力偶合器气液两相流动的数值模拟与粒子图像测速
为了更加真实地反映偶合器内部的气液两相流动机理,该文应用计算流体力学(computational fluid dynamics,CFD)对其内部流动的速度和压力等流场特征进行数值模拟,并应用粒子图像测速(particle image velocimetry,PIV)技术对其流场进行了测试,试验结果表明:泵轮内的气泡小而均匀,速度分布较规律,由内环向外环递增;涡轮内气泡较多,并出现了涡流、回流、二次流等不规则流动现象。PIV测试的流场流动趋势与数值模拟的流场流动趋势基本一致。CFD数值模拟方法和PIV技术为揭示液力偶合器内部流场的复杂流动提供有效的解决途径。
基于互相关算法的液力偶合器内部流场分析
利用PIV技术对液力偶合器内部流场进行了试验测试。针对制动工况(i=0)下液力偶合器涡轮内部流场,以PIV图像连续帧的互相关算法提取其径向切面流速分布,实现了内部流场可视化与速度定量化测量。研究了制动工况下涡轮内部流场结构特征与分布规律,分析了反向流和二次流等现象产生的原因。结果表明,合理设计偶合器内部结构,可减少反向流和二次流的产生,降低了能量损失,提高了工作性能。
基于粒子跟踪测速技术的液力偶合器内部流速测定方法
为了研究液力偶合器内部流场的特性,该文基于粒子跟踪测速(PTV,Particle Tracking Velocimetry)技术对矩形腔型液力偶合器进行了内部流场试验测试,利用单帧3次曝光技术记录示踪粒子不同长度3段运动轨迹,准确判断了偶合器内部流场速度方向。运用边缘检测算法提取粒子运动轨迹,引入双阈值法检测图像强边缘点和弱边缘点,利用该方法可以有效地检测出图像的单像素边缘,直观地提取粒子运动位移大小,进而获得了液力偶合器内部流场速度,实现了其内部流场可视化与定量测量。同时,可以近似估计示踪粒子的粒径大小。












