不同平衡块曲轴对机体振动影响分析
运用三维建模软件UG对某型发动机机体和曲轴系统进行三维建模,运用AVL/Excite软件进行了多体动力学仿真以求得主轴承座激励,其中考虑了主轴承润滑油膜厚度变化等关键影响因素;最后用运Ansys软件对机体进行瞬态动力学响应计算分析。为了模拟再现真实工作情况,按需要在分析中假设主轴承座激励力随曲轴转角变化,其作用力大小,作用区域和方向在不停地改变,找出规律,编程实现准瞬态加载,同时用程序控制瞬态动力学响应求解,很好地实现了在工作状态下不同结构曲轴对机体振动影响的分析研究。
弹翼翼柄加工工艺改进
简述了在翼柄加工过程中,采用机床专用夹具确定工序加工基准,并且选择合理的加工参数及工艺来控制翼柄的加工精度的方法,加工的样件精度满足了设计要求.
基于BP神经网络的盾构推进速度自适应PID控制
盾构掘进过程中地质多变,推进速度要求实现非线性控制,因此对控制方法提出较高的要求.在分析了盾构推进液压系统原理的基础上,建立了盾构推进速度仿真模型,设计了基于BP神经网络的盾构推进速度自适应PID控制器,运用MATLAB软件对常规PID推进速度控制和基于BP神经网络的自适应PID推进速度控制进行了阶跃响应仿真对比,并对基于BP神经网络的自适应PID推进速度控制的正弦跟踪特性进行了仿真.仿真结果表明基于BP神经网络整定的PID控制具有良好的跟踪能力和鲁棒性,相比于传统PID控制系统响应迅速,超调量小,具有很高的响应精度和良好的在线整定能力,对于盾构推进速度这种非线性过程,控制效果比较理想.
新型捣固装置的结构建模与仿真
针对国内捣固装置技术长期依赖引进,缺乏自主知识产权,通过对比分析Plasser,Matisa,Harsco 3家公司捣固装置的激振原理和结构特点,提出一种液压激振与夹持运动独立的捣固装置,以克服捣镐振动产生的夹持液压缸的摆动问题,并设计一种新型转阀来提高液压激振系统的频率和流量.通过建立捣固装置的数学模型,采用Matlab/Simulink软件进行研究.分析结果表明,当阀芯旋转频率为10 Hz,阀口轴向面积导通宽度为10 mm,阀芯沟槽的最大周向导通宽度为8 mm时,激振液压缸最大位移为4.2 mm,从而实现捣镐振幅为8.82 mm,激振频率为40 Hz的振动.阀口面积和激振液压缸位移的大小由阀口轴向面积导通宽度决定.当激振频率越大,激振液压缸位移和运动周期越小.
盾构掘进机液压系统参数匹配特性
在分析盾构掘进机的推进系统和刀盘系统的基础上,推导推进系统压力、刀盘系统压力、推进系统净流量与刀盘系统流量之间的关系,通过实验数据验证了推导模型的正确性.分析土舱内土体的流动连续性,得到螺旋输送机流量、刀盘系统流量、推进系统压力与土舱压力之间的1阶微分方程式,提出以推进压力、土舱压力和刀盘转速的实时数据采样值为输入,螺旋输送机转速为输出的基于排土控制的前馈一反馈土压平衡模型.可知,土舱压力是由推进系统压力、刀盘系统流量和螺旋输送机流量多个因素共同决定的.实验表明,前馈一反馈控制模型的控制效果较好.
-
共1页/5条







