阀用位移传感器自动校准装置的设计
针对阀用位移传感器体积小、测量精度高的特点,设计了一套专用于阀用位移传感器的自动校准装置。详细介绍了校准系统的结构设计、软件控制,重点对测量不确定度进行了分析。校准装置控制伺服驱动器驱动伺服电机,伺服电机从而带动丝杠,连接在丝杠上的驱动平台带动铁芯进行位移,连接于驱动平台上的高精度光栅尺反馈铁芯的位移量。通过对传感器输入、输出之间关系的分析即可进行自动校准。针对所设计的自动校准装置开展了实验,实验结果表明,该装置的校准效果较好,适合于对阀用位移传感器(精度等级0.01,量程低于200 mm)进行校准,具备了较高的实用价值。
电磁超越离合器功率回收型液压泵试验台研究
在常规功率回收型液压泵实验台中,当电机转速超过回收马达转速时,功率回收马达成为电机负载而产生额外的功率损耗。针对这一问题,设计了一种应用电磁超越离合器的功率回收型液压泵试验台,并对该试验台功率回收原理及功率回收效率进行分析。并以K5V200DT轴向柱塞泵作为对象验证试验台的功率回收效果。结果表明:应用了电磁超越离合器的功率回收型液压泵试验台功率回收效率达到了42.16%,功率回收效果良好,为解决液压泵功率回收型试验台的额外功耗问题提供了新的解决方案,对液压泵功率回收型试验台的高效设计具有一定的指导意义。
基于重叠网格的阀芯振荡诱导空化的数值模拟
锥阀作为调压阀在工作过程中受到外部激励作用不可避免的会发生轴向振荡,诱导流场中出现空化现象,空化初生、发展及溃灭与阀芯振荡耦合在一起,导致整个液压系统的压力发生大幅波动。针对这一问题,基于OpenFOAM开源平台二次开发出具有动态重叠网格功能的两相空化流求解器,对阀芯振荡诱导空化现象进行数值模拟,结合实验与数值计算结果得出:阀芯振荡关阀阶段阀腔中油液受到惯性作用向出口流动,产生大范围低压区,在低压影响下促使气核剧烈膨胀,在阀腔下游产生二次空化;阀芯振荡开阀阶段阀口处压力梯度大,压差驱动油液高速通过阀口产生射流,导致阀口处形成射流空化,这将为高性能液压阀的设计提供理论依据。
液压锥阀启闭过程及空化的研究
在锥阀启闭过程中,阀口处流道形状较为复杂,这会促使阀口处产生空化,从而对液压系统的稳定性和可靠性产生不利影响。通过OpenFOAM 3个分支版本的foam-extend-4.1开发出应用浸没边界法的两相空化流动求解器,使用该求解器在阀芯启闭过程及阀口空化的数值模拟研究中尝试应用浸没边界法且得到了较好的计算效果。研究表明,开阀时的空化是因为阀口处高速射流所导致的射流空化,关阀时的空化是由于液压油惯性导致的二次空化。
内嵌微小热电偶的液压阀口温度分布实验及数值分析
液压阀口节流升温不仅会造成能量损失,而且会引发热变形,造成滑阀滞卡,影响液压机械的稳定性甚至安全性。深入研究阀口温度分布是准确预测热变形的前提。本研究将微小热电偶嵌入简化的平面阀口,测量了阀口开度x在1~3 mm、入口压力p_(in)在0.5~3.0 MPa范围内、阀口节流过程中的壁面温度分布。实验表明:阀口节流升温速度随压差增大而增大,x=2 mm,p_(in)=3.0 MPa时,初始升温速度可达到0.79℃/min;节流作用下的阀口温度分布不均匀,阀口开度较小时温度梯度对压差较为敏感,x=1 mm、p_(in)=3.0 MPa时,阀口壁面的最大温差可达到7.86℃;阀口尖角部位通常会产生明显的局部高温,在3.0 MPa下升温110 min可达到72.9℃,但是在大开度或大压差情况下,阀口竖直壁面亦会产生局部高温。针对这一现象,结合ANSYS Fluent软件中的Fluid-solid-heat coupling模块和Mixture多相流模型进行了综合分析,结...
基于动态重叠网格的阀芯振荡空化的研究
锥阀是压力控制阀中常用的阀结构形式,其阀芯的轴向振荡直接影响着压力控制阀的调压精度和工作稳定性。针对先导级锥阀,将动态重叠网格技术与可视化试验相结合,对锥阀振荡时启闭空化的产生原因进行了研究。结果表明:开阀时产生空化的原因是由于阀口开启时的射流;关阀时产生空化的原因是由于断流后液体惯性产生的低压压力波,且改变阀芯运动速度会对流动造成影响。
气动伺服系统自适应控制方法研究
气动伺服系统是一个具有较强非线性的系统,传统控制理论对气动系统的精确控制具有较大的难度。本文分别采用极点配置自适应控制法和组合自校正控制器控制法对气动伺服系统进行了研究。结果表明,相对于极点配置自适应控制法而言,组合自校正控制器自适应控制法能有效地抑制摩擦力等扰动因素对气动系统的影响,从而能提高气动系统的抗干扰鲁棒性和定位精度。
轻轨换轮装置液压系统管路特性分析
液压系统的管路动态特性分析是一个非常复杂的问题,特别是对于复杂的管路系统。本文针对轻轨换轮装置液压缸前的管道偶尔产生强烈振动的现象,采用传递矩阵方法对液压管路和油缸的振动特性建立了数学模型,并在MATLAB中进行了仿真,结果表明预先增大油缸中的充油容积、增大油液粘度、减小管道直径可避免此现象的发生。










