踝关节康复机器人主动训练柔顺控制研究
为保证踝关节康复机器人能为主动康复训练的患者准确提供任意性质的训练力,以气动肌肉冗余并联驱动踝关节康复机器人为对象,研究无误差力跟踪方法和主动训练柔顺控制策略。建立了踝关节康复机器人的动力学模型,基于阻抗控制理论研究了无误差力跟踪的轨迹规划方法,运用李亚谱诺夫稳定性理论提出了气动肌肉冗余并联驱动的柔顺控制策略,以助力和抗阻两种主动训练模式为例,进行了康复训练控制仿真,结果表明,所提出的力跟踪方法和柔顺控制策略不仅能确保主动训练的安全性,还能为训练提供任意而准确的助力和阻力。
气动上肢康复机器人伺服控制和运动规划研究
针对中风导致的人体上肢运动功能障碍,提出了一种气动上肢康复训练机器人系统,并研制了二自由度的机器人样机。以带位置检测传感器的摆动气缸作为机器人的关节驱动模块,用比例调压阀作为控制元件,采用PD+速度前馈的柔顺控制策略,对机器人的关节旋转角度实施精准控制。同时,设计了机器人的复合运动轨迹规划,以取水和擦玻璃动作为任务,带动手臂进行康复训练实验。通过样机的测试,验证了控制策略的有效性和康复轨迹规划的可行性。
一种用于主从控制的阻尼力可调关节模块机构设计
现有的力觉反馈设备,大多将驱动力直接作用于操作人员,具有操纵安全性和柔顺性上的缺陷。针对这个问题,设计了一种用于主从控制的阻尼力可调关节模块机构。该关节模块机构基于制动器原理设计,为被动力反馈系统,安全性好。驱动器使用一对膜片式气缸,采用驱动力转换为摩擦力方式,间接达到转动阻尼力调节的目的。文中论述了阻尼力可调关节模块的设计方案、阻尼力调控原理,并对制作的样机进行实验和数据分析。经过实验证明,阻尼力可调关节模块机构响应速度快、运动可靠、控制精度高,达到了主从控制的使用要求。
仿人灵巧手的结构设计与单指的控制策略
基于机电一体化设计思想和最新的驱动技术,通过分析人体解剖学,针对人类手掌的外形结构、驱动形式以及运动规则,利用仿生学原理设计了一种仿人五指灵巧手。该灵巧手有5个手指,11个自由度,在外观和功能上接近人手;除拇指外其余四指采用模块化设计从而简化了灵巧手的机械结构设计过程,增强了互换性和可靠性。该灵巧手在结构上是人手的1.5倍,手指具有位置、力/力矩以及关节角度的感知功能。通过气动人工肌肉驱动,利用C8051F040单片机对灵巧手指进行控制,采用PID控制算法实现对手指各个关节的位置反馈控制。
基于数据手套的气动灵巧手控制系统设计
设计的气动人工肌肉驱动的灵巧手控制系统,由数据手套完成远端到临近点的主从控制,由分布式二级控制系统完成临近点到接触点的自主控制。两种控制方式相融合,既提高了抓取效率,又保证了抓取的柔性,对灵巧手的智能控制方法的研究有一定的参考价值。
基于AMESim的砖机压力油箱系统优化
利用AMESim软件对某型号砖机液压系统压力油箱子系统进行了建模仿真,依据仿真结果重新优化了压力油箱系统参数,试制样机验证了仿真计算结果的可靠性,达到了优化目标。
液压支架用高压大流量安全阀阀芯瞬态液动力分析
高压大流量工况下阀芯液动力是影响安全阀启溢闭特性的重要因素。以某公司研制生产的FAD1000/50安全阀为对象,建立阀芯瞬态液动力数学模型,通过模拟实际工况的动态仿真,分析影响液动力大小、方向的主要因素,论证了瞬态液动力导致的阀芯振荡是不容忽视的。
直驱式电液执行器驱动双缸系统动态特性
提出了一种采用直驱式电液执行器实现双缸同步驱动的液压系统。通过同步原理分析,提出了三种同步方案。基于AMESim仿真软件,搭建直驱式电液执行器驱动双缸系统的仿真模型,完成系统的动态特性、位置跟踪精度及同步性能分析,为直驱式电液执行器在重载工况下采用多执行元件驱动系统的应用提供了有力的理论支持。
双电液伺服马达位置同步控制研究
针对液压伺服系统所具有的时变性等特点,建立了双电液伺服马达位置同步系统模型,并提出一种基于模糊控制的双电液伺服马达模糊复合交叉耦合式控制方式,通过模糊控制器来补偿同步通道由于时变性和外部干扰所导致的同步误差。仿真结果表明:该方法能提高位置同步精度。
反推算法在微力矩空气动力负载模拟器上的应用
对一种微力矩高频高精度被动式电动负载模拟系统进行研究,提出采用反推控制方法来解决强力/位耦合问题。将系统视为单输入多输出系统,建立了其耦合动力学模型;通过引入适"-3的虚拟控制量来设计反推控制器,使系统误差具有期望的渐进形态,同时基于Lyapunov方法从理论上证明系统的稳定性。从仿真结果中可以看出,在高达60Hz的正弦信号下,承载系统幅值跟踪误差约为0.5%vrad,相位滞后约为10。;同时加载系统幅值跟踪误差约为0.2%N·m,相位滞后约为10°。仿真证明了该方法的可行性和有效性。












