基于刚度阻尼特性重载汽车油气悬架性能分析
油气悬架以其良好的刚度阻尼特性和承载能力而被广泛应用于重载汽车领域。根据单气室油气悬架的结构和工作特征,建立物理模型,基于刚体力学理论和运动力学平衡关系,建立数学模型。分析油气悬架的刚度特性和阻尼特性;在此基础上,基于AMESim搭建某载重汽车的1/2悬架系统模型,分析正常行驶工况和越障工况,油气悬架对路面随机激励和障碍物的响应特性;并对驾驶室的乘坐舒适性进行评价。结果可知油气悬架的刚度和阻尼特性呈现明显的非线性特征;试验对比表明,仿真模型输出特性与试验结果基本一致,理论分析和模型分析结果可靠;簧载质量在三个周期内衰减振动达到90%以上,满足车辆设计时对悬架衰减振动的要求;路面随机激励的频域响应曲线可以看出,其功率谱峰值在1.28Hz左右,避过了人体的共振区域,符合乘坐舒适性的要求;人体的主观感受为没有...
基于振动理论的压杆稳定性分析
以轴向受压梁的固有振动分析为基础,利用线性代数的基本知识,通过去除平凡解的方法,导出了计算压杆临界力的公式.方法不仅比非线性动力学方法简单,而且数学上比材料力学给出的方法严谨,从而丰富和完善了压杆临界力计算的理论和方法.
液力变矩器特性参数的优化方法
从发动机与液力变矩器共同工作出发 ,提出发动机与液力变矩器合理匹配的评价指标 ,即发动机与液力变矩器组合后功率损失率和发动机有效效率损失率。在两个评价指标的基础上提出了液力变矩器特性参数的优化方法 ,优化实例表明该优化方法正确、可行。
无级变速汽车液力变矩器工作策略
为了提高无级变速汽车液力变矩器工作的燃料经济性,确定了液力变矩器锁止、解锁的合理条件。为了提高液力变矩器解锁时的工作效率,利用无级变速器速比调节功能,设计了PID控制器,使得发动机-液力变矩器始终工作在最佳经济区域。为了减少液力变矩器锁止时的冲击,以允许冲击度范围内滑磨功最小与发动机稳定运转2个原则,提出了锁止离合器接合的控制策略,设计了以冲击度和发动机转速差为输入量的模糊控制器。两种不同锁止情况试验结果表明急加速(1.92 s)比缓加速(1.38 s)延长了接合时间,因此,利用控制策略能够保证锁止离合器接合平稳和发动机的稳定运转。
前轴载荷对电动客车EHPS系统的助力与节能性的影响
为了适应纯电动公交客车因前轴载荷变化所引起的液压助力特性与转向电机消耗功率的变化,提高转向轻便性和节能性,建立了纯电动公交客车电动液压助力转向系统的数学模型。基于AMESIM的仿真模型,研究了前轴载荷变化对转向性能的影响,设计了控制策略,满足了车辆对低速轻便性和节能性的要求。仿真结果证明了控制策略的合理性,为在纯电动客车上安装性能良好的EHPS系统提供了理论依据.
电磁与摩擦集成制动系统防抱死制动分层协调控制
为了深入研究电磁与摩擦集成制动系统防抱死控制机理,提高其在紧急制动下的防抱死控制性能,在建立电磁与摩擦集成防抱死制动模型的基础上,根据电磁制动与电子液压制动各自制动控制特性,提出了电磁与摩擦集成制动系统防抱死制动分层协调控制方法。在硬件在环仿真平台上验证了数学模型的有效性,并在模拟干燥沥青路面、冰雪路面以及对接路面环境下,对比研究了电磁与摩擦集成制动系统、高性能电子液压制动系统和低性能电子液压制动系统的防抱死制动性能。结果表明在防抱死控制过程中使用电磁制动取代低性能电子液压制动系统控制车轮最佳滑移率,仅使用低性能电子液压制动提供一定的制动强度,完全可以实现与高性能电子液压制动系统相同甚至更优的防抱死控制效果。
发动机与液力变矩器共同工作特性的分析
正确确定发动机与液力变矩器共同工作输入、输出特性是进行液力传动车辆动力传动系最优匹配的重要基础 笔者提出了确定共同工作输入特性、共同工作区域和共同工作输出特性的计算方法 ,并用MATLAB语言编制相应的程序 。
基于安全特性电子液压制动前后轴制动力分配改进方法
为提高电子液压制动安全性能,本文中对前后轴制动力分配方法进行了改进。首先研究ECE R13制动法规对汽车前后轴制动力分配的影响,然后对电子液压制动安全特性进行分析,得到如下结论电子液压制动中电机泵的作用频次与制动需液量成正比;输出相同的制动力矩的情况下,单独使用后轮制动器比单独使用前轮制动器需要更少的制动液体积;在低于某一制动强度时,共同使用前后轴制动器时制动需液量大于单独使用前轴制动器;利用单侧车轮的进/出液阀控制左右两侧车轮制动器实施制动,可以降低高速电磁阀的使用频次。最后基于上述结论提出了基于安全特性的电子液压制动的前后轴制动力分配改进方法,并进行NYCC循环工况的仿真。结果表明,与理想制动力分配方法相比,采用所提出的改进方法,电机泵和前轴进/出液阀的作用频次约降低50%,而后轴进/出液阀的...
纯电动大客车电动液压助力转向系统的助力研究
针对纯电动大客车电动液压助力转向系统受轮胎气压、车速的影响,依据汽车操纵动力学、多刚体动力学,建立考虑车速和轮胎气压的动态转向力矩模型,利用模糊PID控制因车速和轮胎气压变化对转向助力的影响,并对汽车电动液压转向助力系统的数据进行实验分析.实验结果表明,通过车速和轮胎气压调节转向助力的油压,能实现助力大小的自适应变化,提高了汽车行驶的稳定性和转向轻便性.
电子液压制动系统耗能特性影响因素分析
针对车辆电子液压制动系统存在的能量消耗问题,建立了电子液压制动系统的能耗数学模型,在此模型的基础上分析系统参数和零部件结构参数对电子液压制动系统耗能特性的影响.结果表明减小系统最高工作压力和制动轮缸活塞直径有利于降低电子液压制动系统的耗电量,而系统最低工作压力和蓄能器有效排量的改变对电子液压制动系统的耗电量影响不大.增加蓄能器充气压力、减小蓄能器有效排量以及制动轮缸活塞直径有利于缩小蓄能器体积.












