35MPa民机液压能源系统正常工况下热性能分析
针对我国自主研发的35 MPa压力体制的2H/2E架构民机液压能源系统,结合液压泵、液压用户、液压管路和自增压油箱等关键液压元件的生热和散热机制,在AMESim软件中建立液压元件热分析模型。在此基础上,建立整套液压能源系统热模型,分析它在正常工况下的热性能,得到正常工况热天飞行、热天低空盘旋和冷天飞行时的热仿真分析结果。对比仿真结果和系统温度要求,结果表明:仿真模型精度较高且建模方法具有普适性,可用于民机液压能源系统设计之初的方案论证、优化等工作。
高压液压能源系统热特性及热控制仿真分析
高压液压技术是未来飞机液压系统的主要发展趋势,由于损耗功率增加,系统温度变化将更加剧烈并影响飞行安全,因此,高压液压系统的热特性与热控制技术是未来飞机液压系统设计需要考虑的一个重要因素。以某高压液压能源系统为例,对液压能源系统的主要液压元件进行生热和散热机理分析。利用AMESim软件开展液压系统温度特性分析,权衡系统是否需要热交换器。结果表明:热交换器有效降低系统油液温度至安全温度内;同时,得到燃油-液压油热交换器位于不同位置、系统在不同飞行阶段下不同环境温度、机翼处管路引入冷气流等工况下温度变化趋势,为飞机高压液压能源系统热设计提供参考。
飞机液压裂纹管路动力学分析及其泄漏故障诊断
加工制造及现场装配会导致飞机液压管路外表面产生微缺陷,管路的流固耦合振动会导致微缺陷逐渐转化成裂纹甚至扩展成贯穿性裂纹,进而导致管路产生泄漏故障。因此,研究两端固支约束的飞机液压管路在含有圆周非贯穿裂纹时的动力学特性,建立飞机液压管路流固耦合振动方程以及两端固支约束管路模态函数,并在此基础上构建裂纹管路模态函数,采用Galerkin法对管路流固耦合振动方程离散化,求解方程得到裂纹位置、裂纹圆周角对管路动力学特性影响规律;考虑在循环冲击作用下管路裂纹会扩展成贯穿性裂纹情况下,对循环压力冲击作用下飞机液压管路泄漏故障进行模拟,通过小波变换和负压波法检测及定位管路泄漏位置,最后开展管路泄漏故障实验,验证了检测方法的精确性。
页岩气井下开采管路气固耦合振动特性分析
页岩气开采过程中,井下管路内气体与管路的耦合作用,会引起管路振动,这是此类管路振动失效的主要原因。管路振动响应特性与井下管路长度、气体流速及压力等参数有直接关系,因此,研究这些参数的影响对揭示页岩气管路振动规律,提高井下管路安全性及寿命有重要意义。针对页岩气井下管路,在ADINA软件平台中建立有限元分析模型,进行振动模态分析,研究管路长度、气体流速及压力对管路气固耦合振动特性的作用规律。研究结果为页岩气井下管路振动实验研究提供理论指导,同时为气固耦合振动特性研究奠定基础。
0.6 MN自由锻造液压机力闭环控制系统性能分析
为提高锻件性能和材料利用率,研究了锻造液压机的工作原理,并建立其数学模型,采用频域分析方法,研究负载刚度对力控系统特性的影响。利用AMESim与MATLAB/Simulink建立协同仿真平台,分析系统动态性能,同时分别引入PID控制器、积分分离控制器以及模糊PID控制器分析研究其对于0.6MN自由锻造液压机力闭环控制性能的影响,并通过实验验证仿真结果的正确性。
弹支航空液压管路的加速度载荷响应分析
承受加速度载荷激励的管路应力分析是飞机液压管路设计重点考虑的问题之一。基于响应谱分析方法,研究航空液压管路在加速度载荷作用下的应力响应规律。采用“梁”模型建立两端固支液压管路的动力学数学模型,求解其固有频率;建立其有限元模型进行模态分析,得到管路固有频率。通过锤击实验验证了动力学模型和有限元模型的准确性。以加速度为载荷,对弹支管路进行响应谱分析,发现最大应力出现在管路支承位置,在此基础上,改变管路承受的加速度载荷和支撑刚度,仿真结果表明最大应力值与加速度大小成线性关系,与支撑刚度成非线性关系。
液压集成块湍流模型修正及内流特性分析
基于粒子图像测速技术(PIV)建立了带有刀尖角容腔的直角转弯流道流场的数值计算模型,并进行三维流场仿真。通过将数值计算得到的典型涡系结构与实验结果进行对比,考察了工程上常用的7种湍流模型对带有刀尖角容腔直角转弯流场的预测性能。通过定义权重误差K,筛选出S-A模型作为基础湍流模型并对其进行了参数修正。结果表明,当S-A模型Cb1取值从默认值0.1355修正为0.17时,出流方向正对刀尖角容腔模型权重误差值上升25.0%,入流方向正对刀尖角容腔模型权重误差值下降34.7%,修正后的S-A湍流模型对两种直角转弯流场的综合预测精度有所提高。运用筛选修正后的S-A湍流模型分析了4种典型直角转弯流道的内流特性,结果表明圆弧过渡直角转弯流道相比于带有刀尖角容腔的转弯流道具有更小的压力损失。
蓄能器的研究历史、现状和展望
全面详细地介绍了蓄能器的种类、功用总结了蓄能器研究发展历史及现状;展望了未来蓄能器研究的发展方向.
轴向柱塞泵配流分析用湍流模型探析
流量脉动是衡量柱塞泵性能的重要指标之一,测试系统较为复杂,采用理论手段准确分析柱塞泵流量脉动成为专家研究的热点。针对柱塞泵内部流动状态比较复杂且其内部流场模拟没有通用湍流模型的情况,建立单柱塞-配流盘结构的机理模型,分别采用标准k-?模型、Realizablek-?模型、RNGk-?模型、标准k-ω模型、S-A模型和层流模型对单柱塞-配流盘机理模型进行三维数值模拟,并与PIV试验结果进行对比分析。通过分析其涡系形态、流速、入射角度、压降及流量等特征,确定柱塞泵单柱塞-配流盘机理模型数值模拟最佳湍流模型。对模拟效果较好的标准k-?模型进行系数修正,进一步提高模拟精度,得到的计算模型为柱塞泵流量分析提供了理论基础。
液压集成块直角转弯流道的流动测量及参数优化
本文研究了典型液压集成块中具有不同刀尖角容腔的直角流道的流场特征。搭建了低速可视化试验台,采用2D-PIV技术测量了具有不同刀尖角容腔结构的直角流道流场。建立了全三维数值模型并开展数值模拟研究,通过与粒子图像测量(PIV)测量结果进行比较,比较了七种湍流模型在流场预测中的准确性。通过定义权重误差函数K,筛选出S–A模型作为合适的湍流模型。通过3因素3水平响应面数值试验,研究了流道连接类型、容腔直径和容腔长径比对压力损失的影响。结果表明,Box-Benhnken Design(BBD)模型可以准确预测总压力损失。最优模型是II型流道连接,直径为14.64mm,容腔长径比为67.53%,总压力损失相对于最差模型可下降11.15%。如能进一步采用圆弧型直角转弯流道,总压力损失可降低64.75%,这为液压集成块流道优化设计提供了新的方向。












