斜盘式轴向柱塞泵后壳体机械振动传递路径研究
轴向柱塞泵振动产生后,会按照某种规律沿着一定路径向外传递。以斜盘式轴向柱塞泵为研究对象,分析其机械振动产生机理及传递规律,建立振动传递路径模型;以泵后壳体作为振动传递的最终受体,建立了泵机械振动向后壳体传递的路径模型;通过数值模拟和实验确定模型参数,利用MATLAB对数学模型进行求解,得到了机械振动向后壳体传递的规律;基于路径传递率的概念,对振动传递路径系统进行了路径贡献度分析,并辨识出主要传递路径;搭建了轴向柱塞泵振动测试实验台,进行了实验研究。结果表明:所建立的轴向柱塞泵振动传递路径模型和求解方法较为准确,分析误差小于5%。该研究方法为轴向柱塞泵振动传递、能量耗散规律研究,以及参数灵敏度分析奠定理论基础。
基于响应面法的液压集成块直角转弯流道优化
为优化液压集成块流道工艺参数,在单因素分析基础上,选择流道交连形式、直径、刀尖角伸出比为自变量,以总压损失系数为响应值,运用Box-Benhnken Design(BBD)法设计了3因素3水平响应面设计试验。以ANSYS FLUENT12.0软件为工具对集成块内部流道的三维流场进行了数值仿真计算。结果表明,BBD方法预测的总压损失系数与实际仿真结果吻合良好,验证了不同速度工况下直角转弯流道最佳因素水平取值具有相似性。最优参数组合为交连形式b、流道直径14.64mm以及刀尖角伸出比67.53%,与最不利因素水平相比,总压损失下降11.15%,如采用圆弧过渡直角转弯流道,总压损失则可降低64.57%,这为集成块流道参数优化指明了方向。
随机振动载荷作用下航空液压管路疲劳寿命数值预估
液压管路作为飞机液压传动系统的重要组成部分,是飞机安全飞行的重要保障。由于飞机飞行环境的复杂性,随机振动载荷下的疲劳分析是飞机液压管路动力学设计的重要手段。选取大型客机C919左侧机翼的一段典型液压管路作为研究对象,应用ABAQUS有限元软件进行随机振动响应分析,获取随机振动载荷下的应力响应功率谱密度函数,对液压管路在随机振动载荷下的强度特性进行分析,结合S-N曲线对管路结构危险部位疲劳寿命进行预估,为航空液压管路的设计及优化提供了理论参考。
航空液压管路支架参数灵敏度分析及优化
为解决航空液压系统高速高压化发展带来的航空液压管路振动加剧问题,将液压管路与管路支架视为整体振动系统。基于灵敏度分析方法,采用ANSYS软件平台中的灵敏度分析工具,分析航空液压管路支架参数对振动响应的灵敏度;在灵敏度分析结果基础上,采用基于Pareto最优的多目标遗传算法对管路支架参数进行优化设计,得到振动控制效果更好的管路支架布局,形成一种有效的航空液压管路被动振动控制参数优化方法。为控制航空液压管路振动、推动国产大飞机发展提供理论和技术基础。
机体变形和压力冲击载荷下飞机液压导管强度分析
飞机液压导管系统具有“散、乱、长、杂”特点,是飞机最常见的故障点之一。随着飞机液压系统的高压化,液压导管的强度分析显得更为重要。在机体变形与压力冲击两种载荷耦合作用下,对某型飞机机翼一段回油导管,通过理论计算应力、仿真应力和实验应力三者的对比与分析,得出了导管强度分析仿真方法的正确性以及机体变形载荷对导管强度影响较小的结论,最后对这三种导管强度分析方法进行了综合评价。研究对飞机液压导管的强度分析具有一定的工程实践和理论指导意义。
仿生液压管路双向流固耦合机理及脉动吸收研究
高速高压化导致液压泵口流量压力脉动加剧,其振动控制尤为重要。借鉴“猎豹心脏出口血管能耐受高压高频血液脉动”的生物学机理和结构,提出一种具有3层结构的仿生管路,其外层为钢管,中层为硅橡胶,内层涂有减摩材料。针对仿生管路的中层,考虑硅胶材料非线性,对比分析国内外已有的硅胶材料数学模型后,选用Mooney-Rivlin模型描述硅胶材料,其模型参数由拉伸实验确定;然后,结合硅胶材料模型,对液压管路流固耦合14-方程进行修正;最后,采用ANSYSWorkbench软件分别对不同管路长度和硅胶层厚度的仿生管路进行双向流固耦合仿真。数值分析结果表明,随着管路长度和硅胶层厚度的增加,仿生管路对流量脉动吸收效果不断增强。
基于转子动力学及振动传递路径的轴向柱塞泵振动研究
基于转子动力学及振动传递路径理论,提出一种研究高速高压轴向柱塞泵振动产生及传递的新思路。以轴向柱塞泵旋转组件、联轴器及电机旋转组件为对象,构建泵-电机组转子系统,采用转子动力学和复杂机械系统振动传递理论研究转子系统动力学行为及声振特性演化规律。主要研究内容有:泵-电机组干转子系统动力学建模及其动力学行为分析;间隙环流作用下泵-电机组湿转子系统动力学行为分析;轴向柱塞泵机械多维振动传递机理及声振特性传播分析。预期获得的研究成果,将为揭示高速高压轴向柱塞泵振动机理,实现精准振动控制奠定理论和技术基础。
基于虚拟仪器的自适应型蓄能器测试系统
设计了一种基于虚拟仪器的自适应型蓄能器性能测试系统。针对于参数自适应蓄能器,其工作参数及结构参数均可根据系统工况变化而改变,完成了一套基于虚拟仪器、DSP技术的自动化测试系统设计。介绍了系统的设计原理、硬件组成及软件组成。实验结果表明,该测试系统能方便、准确地完成测试任务。
参数自适应型蓄能器磁流变液工作腔的分析
针对一种参数可变液压蓄能器样机(其充气压力、充气体积、工作介质阻尼系数及进油口结构参数能够根据液压系统工况变化实时调整),采用磁流变液作为其主要工作介质之一,通过磁流变液工作腔实时调整样机的阻尼系数,以满足不同液压系统动态特性的要求.重点研究磁流变液工作腔的结构及其外加电磁线圈磁路,在此基础上建立该部分数学模型,并将其与参数可变蓄能器样机整体数学模型结合进行理论分析,最后通过实验研究验证结构设计及理论分析的正确性.
22MN快锻液压机液压控制系统
22MN快锻液压机液压控制系统利用当前先进的电液比例技术和电控技术,结合液压机工作特性,实现位移正弦控制,且运行快速平稳、无冲击振动。针对该系统高功耗问题,对液压系统进行优化设计,达到了节能的目的。并基于快锻压机工艺对该机的电控系统进行了设计,该系统功能强大,易于操作。












