变量泵负流量控制特性分析
介绍了变量泵负流量控制的工作原理,建立了其动态数学模型,在Simulink上对其进行仿真,并探讨了其主要参数对响应特性的影响。
基于模糊PID的轨道工程车下坡缓速控制
蓄电池轨道工程车下坡行驶时,为保证下坡安全通常利用摩擦制动调节车速,而反复的摩擦制动会使得制动闸瓦温度升高,增加安全隐患。现有蓄电池轨道工程车由于电机功率限制,能够提供的再生制动力不足以与下坡时的负载平衡。结合实际应用,将液压混合动力应用于蓄电池轨道工程车上,基于最大程度回收下坡能量的思路,提出了一种利用液压再生制动力平衡下坡负载的控制策略,优先采用蓄能器回收能量。重点研究了下坡速度的稳定性、电机回收能量时转速的稳定性以及下坡时轨道工程车的能量效率;采用模糊PID控制以适应轨道工程车运行工况的变化。仿真结果验证了下坡缓速控制的有效性,轨道工程车在下坡过程中速度平稳且具有相对较高的能量效率。
电-液混合动力试验台控制系统研制
电-液混合动力系统具有节能环保、续航里程长等优势,针对搭建的电-液混合动力实验平台,设计了应用于该平台的测控系统。测控系统以PC机为上位机、SIMATIC S7-1200PLC为下位机对实验台进行控制与数据采集,通过以太网实现上下位机间的数据传输。上位机监控软件由LabVIEW开发,具有数据采集、分析、显示、存储和报表打印功能,监控界面具备易于操作、可扩展性强、维护方便等优点。
轨道车的电液混合功率迁移与耦合特性
针对现有电力轨道车存在起步性能差、功率冲击大及续航里程短等缺点,研发了一套新型的电液混合驱动系统。建立了系统功率流的数学模型,分析并确定了电功率和液压储能功率之间的耦合方法。基于典型坡道下的行驶工况,制定了适用于不同行驶阶段的功率耦合策略,并利用AMESim软件进行仿真分析。结果表明:起步阶段,电液混合驱动系统可改善轨道车起步加速性能高达57%,并节约了61.7%的电耗;加速阶段,电液混合驱动系统可基本消除电功率冲击,并节约了50%的电耗。
一种新型液压挖掘机回转制动能量回收系统
为了减少挖掘机回转制动时的溢流损失 提出一种基于蓄能器的新型能量回收系统.详细分析了该系统的工作原理 并利用AMESim 软件分别对普通回转系统和新型回转系统进行建模仿真 结果表明: 新型回转系统在一定程度上能够提高系统的稳定性; 蓄能器能够回收部分的制动能并在下一次回转启动时释放这些能量; 在一个完整的工作循环中 该系统的能量回收率达到53?? 1% 再利用率达到72?? 5%.
基于射流原理的柱塞泵辅助吸油技术研究
针对泵吸油不足的问题,设计了一种基于射流原理的辅助吸油装置。利用CFD软件建立了柱塞泵加入和不加入吸油装置的三维数值模型。在不同吸油口压力和油液含气量下,对柱塞泵的吸油特性进行了分析。结果表明:入口压力越低或含气量越高,泵内空化现象越严重,导致油液弹性模量越低,使得回冲阶段柱塞腔内的压力升至工作压力所需时间越长,回冲现象越剧烈,泵吸油性能也就越差。加入吸油装置后,油液流经该装置是一个增压过程,会抑制上述现象,提高泵吸油性能。从仿真结果来看,该装置具有较好的补油效果,且泵吸油性能越差,补油效果越好。
复合阻尼对锥阀压力特性的影响
针对独立阻尼调压锥阀工况适应能力差等问题,提出一种复合阻尼调压锥阀,利用AMESim平台搭建系统仿真模型,与普通锥阀进行对比分析,并分析了复合阻尼调压锥阀减振调压的影响。结果表明:在一定结构参数条件下,复合阻尼调压锥阀具有更好的静态特性且动态特性得到优化;半锥角、孔径对复合阻尼调压锥阀减振调压能力有重要影响。
装载机负荷传感转向液压系统
轮式装载机液压系统中的转向泵在发动机高速状态时的损失是比较大的。液压系统的损失使得液压油的温度升高,从而带来一系列不利影响。通过分析计算和实机试验,对比了负荷传感转向液压系统与常规转向液压系统的损失,显示负荷传感转向液压系统具有较大优势,试验也证明了其液压油温的降低十分明显。
装载机变量液压节能技术
介绍了装载机变量液压系统,并与定量系统进行比较.利用重庆邦助工业公司的LS-BKS8负荷敏感式变量柱塞泵对ZL30机型原液压系统进行了改造,系统的效率和整机工作性能得以提高,并且降低了油温.
水压滑阀流场的CFD解析
利用CFD(Computational fluid dynamics)软件对水压滑阀流场进行了数值解析。获得了内流场压力和速度分布,对滑阀的流场特性进行了分析,其结果对在水压系统中使用的水压滑阀的设计或改进提供了参考依据。












