径向磁液轴承定子温升及热变形研究
提出一种新型的磁液轴承,以电磁悬浮支承为主、静压支承为辅,实现双重支承,并可以实时调控。通过建立磁液轴承的有限元分析模型,对其进行流-固-热耦合求解,得到轴承的流场、温度、应力及应变分布云图。通过调整轴承系统的结构参数(进油孔直径和线圈匝数)及运行参数(输入电流、进油流量、转子转速)分别进行有限元建模,利用ANSYS软件进行仿真分析,求解不同参数对轴承温升及定子热变形的影响规律。结果表明流体造成的压力在进油孔内最高为1 MPa,流体在油膜处流速最高为0.8 m/s;轴承定子温度分布对称,有利于散热。研究结果为磁液轴承系统的优化设计提供理论依据。
甘蔗收获机多路阀阀芯的温升及热变形仿真分析
多路阀是甘蔗收获机械液压系统的核心元件,用于控制多个工作装置的协同作业。针对其阀口压差变化大,节流温升明显,易造成阀芯变形卡滞的问题,对多路阀阀芯进行了流固热耦合仿真研究。利用Design Model软件抽取对应流道,并建立不同开度的多路阀流场仿真模型,导入ANSYS Workbench平台进行不同工况下的流固热耦合仿真,分析对比了双U形和三角形节流槽在不同开度、不同进出口压差工况下,多路阀内部流场的流体速度、阀芯温度及变形的情况。结果表明双U形、三角形节流槽阀芯最高温度始终在节流槽处;随着阀进出口压差增加,油液的最大流速以及两种节流槽型阀芯的最高温度和最大形变量增大,但三角节流槽型阀芯变形相对较小;随着阀口开度的增加,三角节流槽型阀芯温度及最大形变量均小于双U形节流槽阀芯;三角节流槽型阀芯的最大形变量较双U节流槽...
基于摩擦配副变形的轴向柱塞泵配流副流固热耦合影响因素分析
通过考虑轴向柱塞泵配流盘摩擦配副的缸体和配流盘耦合变形,建立了配流副的热流固多场耦合仿真分析模型。用有限元法求解模型中的柱塞流道压力场和温度场以及配副耦合热变形,其结果能够可视化地实时观测在整泵运动过程中两配副表面不同的温度和变形动态分布过程,从而揭示出多因素对其表面油液润滑特性的影响规律,并指出各因素的影响的权重。结果表明:配流副油液的压力和温度与配副两表面的热弹性变形量的具有耦合交互影响,在轴向柱塞泵的配流副高压压油区,由于压力较大,此区域结构变形和温度分布较大。不同工况条件下,压力和转速的提高,会导致结构的应力变形和温度分布成正相比。压力对变形和温度的影响权重均大于60%,明显大于速度的影响,压力对其起着决定性作用。
核主泵流体动压型机械密封流固热耦合分析
核主泵动压轴封在实际运行过程中,摩擦副的力变形、热变形、液膜本身的状态变化等都将直接影响到端面液膜的平衡。本文在考虑动静环组件镶嵌结构的影响及液膜压力、离心力、热载荷的作用下,建立了核主泵流体动压型轴封组件的流固热耦合模型,研究了离心力、介质压力、热载荷对液膜压力的大小及分布、摩擦副端面变形、应力集中趋势等影响,以及运行工况的变化对密封性能的影响。研究结果表明:本文建立的流固热耦合模型及其分析计算可以预测摩擦副端面的变形趋势,揭示密封性能的变化规律;动环组件、静环组件的轴向变形中,介质压力与离心力引起的摩擦副端面变形呈收敛性趋势,热载荷与引起的摩擦副端面变形呈发散性趋势。
盾构机唇形密封流固热耦合仿真研究
盾构机主驱动唇形密封性能直接影响整台盾构机的施工效率。盾构机主驱动唇封密封介质为润滑脂,工作时唇口温度可达50~60℃,为更好地预测唇封的密封性能,考虑润滑脂流变特性、唇口温度对流场分析、密封材料的影响,建立盾构机唇形密封流固热耦合仿真模型。利用流速分离法推导润滑脂二维雷诺方程,采用赫兹接触模型计算粗糙峰接触压力,结合有限元软件开展热力耦合分析,实现唇封温度场及摩擦力矩、泄漏率等关键性能参数的定量预测。结果表明:考虑温度场后唇封最大接触压力减小,接触宽度增大,摩擦力矩减小。温度对唇封应力应变状态及密封性能产生较大影响,这对盾构机主驱动唇形密封设计具有一定指导作用。
基于流固热耦合的浮环密封力学特性数值研究
考虑温度的影响,建立浮环密封力学特性流固热耦合数值求解模型,在验证计算方法准确性的基础上,研究浮环密封的流场特性,以及石墨烯、石墨、铝合金以及碳化硅4种材料的浮环密封在不同进口压力、温度时的力学特性。结果表明:浮环密封在偏心时,由于楔形间隙的存在,气流经过这种结构产生流体动压效应,在较薄的流体域一侧形成局部高压区,较厚的一侧压力无明显变化,而温度沿轴向方向逐级升高,且偏心率越大,偏心位置的温度越大;浮环密封流体域温度随着进口压力的升高而降低,因温度影响材料的属性,使得不同材料的浮环密封结构对温度会很敏感;不同材料浮环密封的变形量随进口压力的增加而减小,应变也随着进口压力的增加而减小;4种材料浮环密封的变形量与应力均随着进口温度的增加而增大。
基于流固热耦合的负载敏感多路阀仿真研究
由于多路阀内部流量大、压力高,且流道结构复杂、节流温升大,会造成阀芯发生变形而引起卡滞现象,为此,对多路阀进行了流固热耦合数值模拟仿真研究。首先,利用AMESim和UG软件对负载敏感多路阀进行了建模;然后,利用ICEM对流体域及固体域进行了网格划分;最后,采用ANSYS Workbench平台,在不同工况下对多路阀进行了流固热耦合数值模拟仿真,分析了不同工况下多路阀流场内流体速度、压力分布、节流温升、气穴气蚀以及阀芯变形的情况。研究结果表明阀芯与油液接触的区域温度受影响较大,而远离油液的区域阀芯温度变化不明显,在油液温度影响下,阀芯上节流槽区域发生膨胀变形,说明节流温升对阀芯的影响主要集中在节流槽附近区域;当主阀口开口度较大,压力补偿器开度较小时,阀内易出现气穴,产生气蚀现象,节流槽处温升非常明显,阀芯变形量较大,容易引起...
基于CFD多路阀铲斗联流固耦合解析
分析HDF多路阀结构,利用三维建模软件分别建立流体模型及固体结构模型。结合计算流体力学理论,利用商业CFD软件,通过设置模型参数及边界条件对HDF多路阀流场及阀芯结构场进行解析。对流体解析数据分析,得到滑阀铲斗联速度场、压力场分布情况;对阀芯结构场解析,得到铲斗联阀芯在流固耦合边界条件下的应力应变情况,为液压阀内部特征的预测提供依据。
多路阀阀芯流固热耦合研究
针对多路阀高压大流量,流道结构复杂,节流温升大,造成阀芯易卡滞的问题,采用流固热耦合分析方法对阀芯进行了仿真研究。采用非线性有限元软件ADINA分别建立了阀芯固体模型和阀芯区域流道的流体模型,设置了流固热耦合边界条件,流体计算应用了k-ε湍流模型。在仿真中设置进油压力30 MPa,进油流速0.5 m/s,阀芯初始温度20℃,进油温度分别设置为25,30,35,40℃。通过研究获得阀芯温度受影响区域在与油液接触处,远离油液的区域阀芯温度变化不大,阀芯上节流槽受油液温度影响最大,说明合理设计节流槽结构可降低温度效应对阀芯的影响,阀芯变形主要产生在回油区域,油液温度越高阀芯变形越大,阀芯卡死将产生于回油附近区域,同时随着油液温度的增加,阀芯变形加大,工作腔压力将上升,回油流速将下降。
面向液压滑阀卡滞问题的健壮性设计
为了解决由黏性发热引起的液压滑阀卡滞问题,综合液压滑阀结构的流固热耦合解析与多学科优化基础,提出面向液压滑阀卡滞问题的健壮性设计方法.即采取顺序耦合分析方式,在液压滑阀结构流固热耦合下,通过流体有限元获得阀芯变形引起液压滑阀卡滞的敏感因子,且以响应面函数模型表达阀芯变形与敏感因子之间的函数关系;对于外界随机变化因子,应用6σ法则优化可设计因子来减小随机因子对性能的影响,并以蒙特卡罗随机分析方法验证设计后阀芯变形对外界因子随机变化的健壮性.解析实例表明,阀芯结构、滑阀开度、负载流量和介质温度是引起液压滑阀卡滞的敏感性因素,健壮性设计方法在滑阀卡滞多因子复杂设计问题中明显优于传统设计方法.












