基于小波包分析的声强计算方法
传统的基于FFT的声强计算方法是分析平稳噪声信号的有效工具,但是它却无法对机电设备发生故障时所辐射出的非平稳噪声信号进行有效的分析。由于小波包分析可以实现非平稳噪声信号在不同频带和不同时刻的合理分离,因此可以利用小波包分析对声强进行计算。文中应用自行研制的噪声自动分析系统对声强的计算方法进行了研究,提出了一种基于小波包信号分析技术的声强计算方法:并通过实验验证了该方法的正确性。该方法不同于传统的基于FFT分析的声强计算方法,可以实现对非平稳故障噪声信号的分析,为机电设备的噪声监测和故障诊断提供了一条研究途径。
选择性声强技术的研究及其在噪声控制中的应用
传统的声强技术容易受到强大背景噪声的干扰,针对此问题本文提出一种新的噪声测试技术--选择性声强技术,并利用自行研制的噪声自动分析系统对其进行了研究,包括原理、算法及测试设备。研究结果表明:选择性声强技术可以将目标噪声源的辐射噪声从强大的背景噪声中分离出来,测量结果有效地反映了目标噪声源的声场分布状况,为目标噪声源的噪声辐射特性研究及噪声控制提供参考依据。
液驱混合动力车辆液压系统设计及性能分析
基于液驱混合动力车辆液压系统的功率流,提出了液压系统设计所需要使用的评价指标。结合车辆的动力性能和十五工况的要求,对液压系统中的双向变量马达、液压泵和蓄能器的参数选取和匹配进行了研究。针对具体车辆,对其在计算机上进行了仿真,并在实际样车上进行了改装和试验,所得结论可作为液驱混合动力车辆液压系统设计的参考。
液驱混合动力车辆控制系统硬件在环仿真
提出一种针对控制器开发的硬件在环仿真调试平台,并应用于液驱混合动力车辆控制系统的开发过程中。利用该平台对液驱混合动力车辆控制系统进行仿真及初步调试。研究结果表明该平台能够验证电子控制单元软件算法和控制模式的正确性与合理性,降低实车调试的危险程度,从而可以避免调试过程中不必要的损失,提高控制系统研发的效率与质量。
新型电控液驱车二次元件控制策略的实验研究
简介了自行研制的新型电控液驱车模拟实验装置。利用模拟实验装置,设定了包括加速、定速和减速的典型工况,对新型电控液驱车二次元件的不同控制策略进行了实验研究。研究表明:与常规PID控制相比,模糊PID控制具有鲁棒性强,控制效果好等优点。研究结果为进一步对新型电控液驱样车的整车控制提供了基础。
对二次调节系统中蓄能器的研究
二次调节系统具有传统液驱方式所无法具备的优点.在二次调节系统中,液压蓄能器的选配是关键.本文通过建立二次调节环境下的液压蓄能器动态数学模型,继而通过仿真分析相应的蓄能器产品.建立二次调节环境下的蓄能器数学模型也有利于对二次调节系统调速特性和动态特性的深入研究.
一种新型电控液驱车辆的性能仿真与分析
提出一种新的电控液驱车辆技术方案,针对这一方案建立车辆的仿真模型,初步确定主要技术参数与控制策略,对其经济性与动力性等基本性能进行了仿真计算,并与常规的同类车辆进行对比分析。研究表明,新型电控液驱车辆具有优越的节能环保性能及其它特性,以及良好的发展前景。
新型电控液驱车辆燃油经济性计算与分析
利用系统辨识的原理建立发动机数学模型,建立了电控液驱车辆不同行驶状态下的燃油经济性计算模型.采用基于MATLAB/Simulink语言编写计算程序进行仿真分析,通过实例计算得出了电控液驱车辆不同行驶工况下的燃油消耗指标,与传统车辆进行比较,电控液驱车辆具有明显的节能效果.
新型传动试验装置能量再生系统效率分析
建立了静液压储能传动汽车能量再生系统各分立元件蓄能器、变量泵/马达、飞轮以及液压回路的分析模型和系统模型.以蓄能器压力和温度、泵/马达的扭矩和效率、压力损失和飞轮的转速为时间参变量,采用四阶Rugge-Kutta算法求解微分方程.以此计算的系统变量来确定能量损耗和循环效率.计算结果表明,能量损耗主要产生于液压泵/马达,约占总损失的24%,当蓄能器的热时间常数为60 s时,蓄能器基本处于绝热状态,热能损失很少;系统循环效率在50%~75%,与计算时飞轮的初速度和转动惯量有关.
液压技术在车辆制动能量回收的研究
节能是现代科学技术面临的严重挑战.节能从广义上说应包括能量的回收.二次调节静液传动系统具有能量回收再利用的特点.本文介绍这种系统在制动时的工作原理,阐述了其设计方法.该系统克服了现有车辆制动装置工作时只能消耗能量而不能回收和再利用能量的特点.












