基于DSP的低频频率特性测试仪的设计
传统的频率特性测试仪不仅价格昂贵,且得不到相频特性,更不能保存频率特性图和打印频率特性图,也不能与计算机接口,给使用者带来了诸多不便。而本文采用DDS技术作为扫频信号源;同时采用了集成模拟芯片AD8302对幅度和相位进行检测,用DSP芯片TMS320VC5409和CPLD芯片EPM7128进行测量控制和数据处理,人杌接口部分是利用单片机AT89C51实现,并配有打印机接口和串行通信接口。
1 系统总体方案设计
频率特性测试系统一般包含测试信号源、被测网络、检波及显示3个部分。本系统根据所要完成的测试功能及技术指标,该系统应由扫频源、幅度相位测量电路、控制及运算部分、人机接口单元几部分组成。系统总体方框图如图1所示。
信号源电路由信号发生电路和信号调理电路两部分组成。在本系统中信号发生电路采用DDS技术(即直接数字频率合成技术)实现,用于产生频率、持续时间等均可控的扫频信号,并能够满足一般用户对频率范围的要求;信号调理电路主要是对信号中的噪声进行抑制并对输出信号的功率起到控制作用。
增益相位检测电路是为了检测被测网络两端的幅度差和相位差。先对被测网络两端的信号进行预处理后对其进行模拟鉴幅和鉴相,然后把幅度差和相位差的模拟量由ADC转化为数字量,送给控制及数据处理电路进行分析处理。
控制及数据处理电路要完成逻辑控制、数据处理和与人机接口部分通信3个主要功能,由DSP和CPLD组成。主要用于控制整个系统的协调工作,并对测量及人机接口部分来的数据进行分析处理。
图形显示及接口电路负责接收各种指令和显示测量结果,测量时扫频信号所需要的起始频率、终止频率、频率问隔、单频点持续时间、信号功率等参数,以及测量完成后显示特性曲线时显示方式的设置,如:刻度大小选择、文字标注方式、坐标选择等。
2 系统硬件设计
系统由扫频源、幅度相位测量电路、控制及运算部分、人机接口单元几部分组成。
2.1 扫频信号源设计
直接选用DDS技术设计扫频信号源。从设计要求低频和成本考虑,这里选择AD7008系列中20 MHz芯片。扫频信号源框图如图2所示。由于AD7008内部没有时钟发生电路,所以需要外部时钟源提供时钟信号,本系统采用NBC12439为AD7008提供时钟信号。
由于AD7008输出信号的幅度不能达到系统所要求的-55~+18 dBm的范围,故需要对信号进行放大,放大电路的设计较为简单,为了便于对输出信号的功率控制使用了可控增益放大器,易于数字控制增益的大小;又因为输出信号的最大功率要达到+18 dBm且信号频率最高达5 MHz,普通的运放难以达到要求,故使用射频放大器来提升信号的输出功率。AD7008所产生的信号直接由器件内部的DAC输出,内部不含低通滤波器,故要对其输出信号进行滤波处理。
相关文章
- 2024-06-24卷接机噪声主被动联合控制技术研究
- 2024-07-19基于FPGA的航天相机控制器接口的设计
- 2024-10-15基于行波模型的结构响应控制研究
- 2024-03-26540kN力基准机砝码摆动的研究
- 2023-11-01基于BH1750芯片的测光系统设计与实现



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。