异步电机的无速度传感器控制系统
0引言:
传统的异步电动机控制系统中的测量装置较多采用光电数字脉冲编码器,而它在使用的过程中易受到干扰,降低了系统的可靠性,且不适用于恶劣的工况环境。针对以上缺点,本文提出了空间脉宽调制技术(SVPWM)的无速度传感器控制,利用现代的数字信号处理技术,使得复杂的磁链和转速控制得以实现。并基于DSPTMS320F2812实现了异步电机无速度传感器的矢量控制。
1空间脉宽调制原理
对异步电动机而言,加载到定子上的三相交流电产生旋转磁场,与转子的感应磁场交互作用产生扭矩而使转子旋转。空间脉宽调制是将定子的三相电流矢量由坐标转换成两个等效且正交的分量,其中一相相当于磁场电流,另一相则相当于扭矩电流。空间矢量控制在于控制定子的三相电流的大小、频率和相位,使其磁场分量维持在最大容许值,调节扭矩电流分量来控制扭矩的大小。并通过控制逆变器的开关模式,使电机的定子电压空间矢量沿圆形轨迹运动,从而明显降低转矩脉动[1]。常用的三相电压源逆变主电路结构如图1所示。
图1三相电压源逆变电路结构图
三相逆变器共有8种开关状态(上桥臂导通开关状态为1,下桥臂导通开关状态为0),从而对应8种基本空间电压矢量,其中两个是零电压矢量(O0、O111),另外6个基本电压空间矢量(U0,U60,U120,U180,U240,U300)在空间互差60度,幅值均为
。对于任意电压空间矢量(Ux,UX+60)和两个零电压空间矢量(O0、O111)按平行四边形法则合成得到,如图2所示,Uref如式(1)所 示: (1)
2无速度传感器控制原理
无速度传感器的矢量控制就是通过检测异步电机的相电流和相电压,采用一定的观测技术观测出异步电机的转速,作为矢量控制系统中转速闭环的转速反馈。如图3所示。
图3控制原理系统框图
2.1转子磁链估计
在转子磁场定向的矢量控制系统中,转子磁链的准确估计和控制是影响电机控制性能的关键因素之一。转子磁链估计有电压型和电流型两种。传统的电压模型算法简单,受电机参数变化影响小,但低速时观测精确度较低而且纯积分环节的误差积累和漂移问题严重。传统的电流模型不涉及纯积分项,低速的观测性能强于电压模型法,但高速时不如后者,而且受转子时间常数影响较大[2]。
本文将电压模型和电流模型结合起来估算转子磁链,对电流模型计算的磁链进行PI运算,再用PI运算的结果补偿电压模型的磁链,通过调节PI参数的值,使得在高速时电压模型起主要作用,低速时使电流模型起主要作用,克服了它们的缺点,提高估算的准确性。
相关文章
- 2023-03-02智能化色谱分析软件的研究与应用探讨
- 2024-02-26实现同一分析周期内两流路并行分析的技术改造
- 2024-07-09多CCD拼接相机中图像传感器不均匀性校正
- 2022-04-27监控摄像机日夜及彩色黑白转换两用简析
- 2024-07-31铁路客车提速轴承外圈非基准端面挡边平行度测量仪的研制



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。